DNA Damage
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
DNA Repair
The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.
Comet Assay
A genotoxicological technique for measuring DNA damage in an individual cell using single-cell gel electrophoresis. Cell DNA fragments assume a "comet with tail" formation on electrophoresis and are detected with an image analysis system. Alkaline assay conditions facilitate sensitive detection of single-strand damage.
Ataxia Telangiectasia Mutated Proteins
A group of PROTEIN-SERINE-THREONINE KINASES which activate critical signaling cascades in double strand breaks, APOPTOSIS, and GENOTOXIC STRESS such as ionizing ultraviolet A light, thereby acting as a DNA damage sensor. These proteins play a role in a wide range of signaling mechanisms in cell cycle control.
Cell Cycle Proteins
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
Ultraviolet Rays
That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants.
Deoxyguanosine
A nucleoside consisting of the base guanine and the sugar deoxyribose.
Checkpoint Kinase 2
Enzyme activated in response to DNA DAMAGE involved in cell cycle arrest. The gene is located on the long (q) arm of chromosome 22 at position 12.1. In humans it is encoded by the CHEK2 gene.
Tumor Suppressor Protein p53
Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER.
DNA-Binding Proteins
DNA Breaks, Double-Stranded
Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently.
Protein-Serine-Threonine Kinases
A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.
Oxidative Stress
A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).
Cell Cycle
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Tumor Suppressor Proteins
Gamma Rays
Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source.
Apoptosis
One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.
DNA
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Methyl Methanesulfonate
An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA.
Histones
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
Mutagens
Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes.
Nuclear Proteins
Genomic Instability
G2 Phase
The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.
DNA Replication
The process by which a DNA molecule is duplicated.
Mutation
Phosphorylation
Cell Line, Tumor
A cell line derived from cultured tumor cells.
DNA Repair Enzymes
Enzymes that are involved in the reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule, which contained damaged regions.
Dose-Response Relationship, Radiation
DNA Adducts
The products of chemical reactions that result in the addition of extraneous chemical groups to DNA.
Reactive Oxygen Species
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of signal transduction and gene expression, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS.
Cell Survival
Hydrogen Peroxide
DNA Breaks
Interruptions in the sugar-phosphate backbone of DNA.
Radiation Tolerance
The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS.
Protein Kinases
Poly(ADP-ribose) Polymerases
Enzymes that catalyze the transfer of multiple ADP-RIBOSE groups from nicotinamide-adenine dinucleotide (NAD) onto protein targets, thus building up a linear or branched homopolymer of repeating ADP-ribose units i.e., POLY ADENOSINE DIPHOSPHATE RIBOSE.
Genes, cdc
Genes that code for proteins that regulate the CELL DIVISION CYCLE. These genes form a regulatory network that culminates in the onset of MITOSIS by activating the p34cdc2 protein (PROTEIN P34CDC2).
Cell Cycle Checkpoints
Regulatory signaling systems that control the progression through the CELL CYCLE. They ensure that the cell has completed, in the correct order and without mistakes, all the processes required to replicate the GENOME and CYTOPLASM, and divide them equally between two daughter cells. If cells sense they have not completed these processes or that the environment does not have the nutrients and growth hormones in place to proceed, then the cells are restrained (or "arrested") until the processes are completed and growth conditions are suitable.
DNA Breaks, Single-Stranded
Interruptions in one of the strands of the sugar-phosphate backbone of double-stranded DNA.
Signal Transduction
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Rad51 Recombinase
A Rec A recombinase found in eukaryotes. Rad51 is involved in DNA REPAIR of double-strand breaks.
DNA Glycosylases
A family of DNA repair enzymes that recognize damaged nucleotide bases and remove them by hydrolyzing the N-glycosidic bond that attaches them to the sugar backbone of the DNA molecule. The process called BASE EXCISION REPAIR can be completed by a DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE which excises the remaining RIBOSE sugar from the DNA.
HeLa Cells
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
S Phase
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
Saccharomyces cerevisiae Proteins
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
BRCA1 Protein
The phosphoprotein encoded by the BRCA1 gene (GENE, BRCA1). In normal cells the BRCA1 protein is localized in the nucleus, whereas in the majority of breast cancer cell lines and in malignant pleural effusions from breast cancer patients, it is localized mainly in the cytoplasm. (Science 1995;270(5237):713,789-91)
Cells, Cultured
Fibroblasts
Mitosis
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
Cell Aging
The decrease in the cell's ability to proliferate with the passing of time. Each cell is programmed for a certain number of cell divisions and at the end of that time proliferation halts. The cell enters a quiescent state after which it experiences CELL DEATH via the process of APOPTOSIS.
Micronucleus Tests
Induction and quantitative measurement of chromosomal damage leading to the formation of micronuclei (MICRONUCLEI, CHROMOSOME-DEFECTIVE) in cells which have been exposed to genotoxic agents or IONIZING RADIATION.
Saccharomyces cerevisiae
Cell Nucleus
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
Hydroxyurea
An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.
Antioxidants
DNA-Activated Protein Kinase
A serine-threonine protein kinase that, when activated by DNA, phosphorylates several DNA-binding protein substrates including the TUMOR SUPPRESSOR PROTEIN P53 and a variety of TRANSCRIPTION FACTORS.
G2 Phase Cell Cycle Checkpoints
Intracellular Signaling Peptides and Proteins
Proteins and peptides that are involved in SIGNAL TRANSDUCTION within the cell. Included here are peptides and proteins that regulate the activity of TRANSCRIPTION FACTORS and cellular processes in response to signals from CELL SURFACE RECEPTORS. Intracellular signaling peptide and proteins may be part of an enzymatic signaling cascade or act through binding to and modifying the action of other signaling factors.
Chromatin
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
Alkylating Agents
Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases.
X-Rays
Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source.
Replication Protein A
A single-stranded DNA-binding protein that is found in EUKARYOTIC CELLS. It is required for DNA REPLICATION; DNA REPAIR; and GENETIC RECOMBINATION.
Recombinational DNA Repair
Models, Biological
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
Protein Binding
DNA Helicases
Proteins that catalyze the unwinding of duplex DNA during replication by binding cooperatively to single-stranded regions of DNA or to short regions of duplex DNA that are undergoing transient opening. In addition DNA helicases are DNA-dependent ATPases that harness the free energy of ATP hydrolysis to translocate DNA strands.
Oxidation-Reduction
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
Poly Adenosine Diphosphate Ribose
Cell Death
RNA, Small Interfering
Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.
Molecular Sequence Data
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
SOS Response (Genetics)
An error-prone mechanism or set of functions for repairing damaged microbial DNA. SOS functions (a concept reputedly derived from the SOS of the international distress signal) are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after DNA repair, and possibly in cell death when DNA damage is extensive.
Proto-Oncogene Proteins c-mdm2
An E3 UBIQUITIN LIGASE that interacts with and inhibits TUMOR SUPPRESSOR PROTEIN P53. Its ability to ubiquitinate p53 is regulated by TUMOR SUPPRESSOR PROTEIN P14ARF.
Recombination, Genetic
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
Pyrimidine Dimers
Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION.
DNA-Formamidopyrimidine Glycosylase
A DNA repair enzyme that is an N-glycosyl hydrolase with specificity for DNA-containing ring-opened N(7)-methylguanine residues.
Mitomycin
An antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional ALKYLATING AGENTS causing cross-linking of DNA and inhibition of DNA synthesis.
HCT116 Cells
Human COLORECTAL CARCINOMA cell line.
Micronuclei, Chromosome-Defective
Defective nuclei produced during the TELOPHASE of MITOSIS or MEIOSIS by lagging CHROMOSOMES or chromosome fragments derived from spontaneous or experimentally induced chromosomal structural changes.
Ubiquitination
Cyclin-Dependent Kinase Inhibitor p21
A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.
Telomere
Nucleic Acid Synthesis Inhibitors
Compounds that inhibit cell production of DNA or RNA.
DNA End-Joining Repair
Blotting, Western
Mutagenicity Tests
Dose-Response Relationship, Drug
Xeroderma Pigmentosum Group A Protein
A ZINC FINGER MOTIF protein that recognizes and interacts with damaged DNA. It is a DNA-binding protein that plays an essential role in NUCLEOTIDE EXCISION REPAIR. Mutations in this protein are associated with the most severe form of XERODERMA PIGMENTOSUM.
Lymphocytes
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS.
Ataxia Telangiectasia
An autosomal recessive inherited disorder characterized by choreoathetosis beginning in childhood, progressive CEREBELLAR ATAXIA; TELANGIECTASIS of CONJUNCTIVA and SKIN; DYSARTHRIA; B- and T-cell immunodeficiency, and RADIOSENSITIVITY to IONIZING RADIATION. Affected individuals are prone to recurrent sinobronchopulmonary infections, lymphoreticular neoplasms, and other malignancies. Serum ALPHA-FETOPROTEINS are usually elevated. (Menkes, Textbook of Child Neurology, 5th ed, p688) The gene for this disorder (ATM) encodes a cell cycle checkpoint protein kinase and has been mapped to chromosome 11 (11q22-q23).
Oxidants
Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION).
Endodeoxyribonucleases
cdc25 Phosphatases
A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES.
Proliferating Cell Nuclear Antigen
Nuclear antigen with a role in DNA synthesis, DNA repair, and cell cycle progression. PCNA is required for the coordinated synthesis of both leading and lagging strands at the replication fork during DNA replication. PCNA expression correlates with the proliferation activity of several malignant and non-malignant cell types.
Antigens, Nuclear
Immunologically detectable substances found in the CELL NUCLEUS.
Endonucleases
RNA Interference
A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.
Mice, Knockout
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.
Carcinogens
Homologous Recombination
An exchange of DNA between matching or similar sequences.
Genes, p53
Schizosaccharomyces pombe Proteins
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Brain Damage, Chronic
A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions.
DNA Fragmentation
Splitting the DNA into shorter pieces by endonucleolytic DNA CLEAVAGE at multiple sites. It includes the internucleosomal DNA fragmentation, which along with chromatin condensation, are considered to be the hallmarks of APOPTOSIS.
Lipid Peroxidation
Peroxidase catalyzed oxidation of lipids using hydrogen peroxide as an electron acceptor.
Base Sequence
Antineoplastic Agents
Substances that inhibit or prevent the proliferation of NEOPLASMS.
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide
Cell Proliferation
All of the processes involved in increasing CELL NUMBER including CELL DIVISION.
Schizosaccharomyces
Transcription, Genetic
Etoposide
A semisynthetic derivative of PODOPHYLLOTOXIN that exhibits antitumor activity. Etoposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent entry into the mitotic phase of cell division, and lead to cell death. Etoposide acts primarily in the G2 and S phases of the cell cycle.
Gene Expression Regulation
Exodeoxyribonucleases
A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products.
Linear Energy Transfer
Ubiquitin
A highly conserved 76-amino acid peptide universally found in eukaryotic cells that functions as a marker for intracellular PROTEIN TRANSPORT and degradation. Ubiquitin becomes activated through a series of complicated steps and forms an isopeptide bond to lysine residues of specific proteins within the cell. These "ubiquitinated" proteins can be recognized and degraded by proteosomes or be transported to specific compartments within the cell.
Ubiquitin-Protein Ligases
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.
Tumor Cells, Cultured
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
Flow Cytometry
Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake.
Chromosomal Proteins, Non-Histone
Spermatozoa
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
4-Nitroquinoline-1-oxide
In Situ Nick-End Labeling
An in situ method for detecting areas of DNA which are nicked during APOPTOSIS. Terminal deoxynucleotidyl transferase is used to add labeled dUTP, in a template-independent manner, to the 3 prime OH ends of either single- or double-stranded DNA. The terminal deoxynucleotidyl transferase nick end labeling, or TUNEL, assay labels apoptosis on a single-cell level, making it more sensitive than agarose gel electrophoresis for analysis of DNA FRAGMENTATION.
Sister Chromatid Exchange
An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME.
Gene Deletion
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
DNA, Single-Stranded
Transcription Factors
Amino Acid Sequence
Mutagenesis
RecQ Helicases
A family of structurally-related DNA helicases that play an essential role in the maintenance of genome integrity. RecQ helicases were originally discovered in E COLI and are highly conserved across both prokaryotic and eukaryotic organisms. Genetic mutations that result in loss of RecQ helicase activity gives rise to disorders that are associated with CANCER predisposition and premature aging.
N-Glycosyl Hydrolases
Telomeric Repeat Binding Protein 2
A ubiquitously expressed telomere-binding protein that is present at TELOMERES throughout the cell cycle. It is a suppressor of telomere elongation and may be involved in stabilization of telomere length. It is structurally different from TELOMERIC REPEAT BINDING PROTEIN 1 in that it contains basic N-terminal amino acid residues.
DNA-(Apurinic or Apyrimidinic Site) Lyase
A DNA repair enzyme that catalyses the excision of ribose residues at apurinic and apyrimidinic DNA sites that can result from the action of DNA GLYCOSYLASES. The enzyme catalyzes a beta-elimination reaction in which the C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. This enzyme was previously listed under EC 3.1.25.2.
Protein Structure, Tertiary
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
Chromatin Assembly and Disassembly
Antimutagenic Agents
S Phase Cell Cycle Checkpoints
Cell regulatory signaling system that controls progression through S PHASE and stabilizes the replication forks during conditions that could affect the fidelity of DNA REPLICATION, such as DNA DAMAGE or depletion of nucleotide pools.
G1 Phase
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.
Cisplatin
An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle.
Free Radicals
Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated.
Xeroderma Pigmentosum
A rare, pigmentary, and atrophic autosomal recessive disease. It is manifested as an extreme photosensitivity to ULTRAVIOLET RAYS as the result of a deficiency in the enzyme that permits excisional repair of ultraviolet-damaged DNA.
Chromosome Aberrations
Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS.
Superoxide Dismutase
An oxidoreductase that catalyzes the reaction between superoxide anions and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. EC 1.15.1.1.
Microscopy, Fluorescence
Enzyme Activation
DNA-Directed DNA Polymerase
DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair.
Disease Models, Animal
Doxorubicin
Camptothecin
An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity.
Free Radical Scavengers
Substances that influence the course of a chemical reaction by ready combination with free radicals. Among other effects, this combining activity protects pancreatic islets against damage by cytokines and prevents myocardial and pulmonary perfusion injuries.
Transfection
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
Antibiotics, Antineoplastic
Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms.
Neoplasms
Radiation-Protective Agents
Glutathione
Fanconi Anemia Complementation Group D2 Protein
A Fanconi anemia complementation group protein that undergoes mono-ubiquitination by FANCL PROTEIN in response to DNA DAMAGE. Also, in response to IONIZING RADIATION it can undergo PHOSPHORYLATION by ataxia telangiectasia mutated protein. Modified FANCD2 interacts with BRCA2 PROTEIN in a stable complex with CHROMATIN, and it is involved in DNA REPAIR by homologous RECOMBINATION.
Catalase
An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA.
Enzyme Inhibitors
Cell Division
The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.
Topoisomerase I Inhibitors
Compounds that inhibit the activity of DNA TOPOISOMERASE I.
Chromosomal Instability
An increased tendency to acquire CHROMOSOME ABERRATIONS when various processes involved in chromosome replication, repair, or segregation are dysfunctional.
DNA, Mitochondrial
Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins.
CDC2 Protein Kinase
Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.
Aging, Premature
RNA, Messenger
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Methylnitronitrosoguanidine
Mitochondria
Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)
Down-Regulation
A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.
DNA Topoisomerases, Type I
DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix.
Gene Knockdown Techniques
The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.
Serine
Rad52 DNA Repair and Recombination Protein
A DNA-binding protein that mediates DNA REPAIR of double strand breaks, and HOMOLOGOUS RECOMBINATION.
HEK293 Cells
A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.
Carrier Proteins
Protein Processing, Post-Translational
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
Fanconi Anemia
Congenital disorder affecting all bone marrow elements, resulting in ANEMIA; LEUKOPENIA; and THROMBOPENIA, and associated with cardiac, renal, and limb malformations as well as dermal pigmentary changes. Spontaneous CHROMOSOME BREAKAGE is a feature of this disease along with predisposition to LEUKEMIA. There are at least 7 complementation groups in Fanconi anemia: FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL. (from Online Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=227650, August 20, 2004)
Immunoblotting
Topoisomerase Inhibitors
Compounds that inhibit the activity of DNA TOPOISOMERASES.
Plasmids
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
Liver
Immunohistochemistry
Radiation-Sensitizing Agents
Rats, Sprague-Dawley
Aging
Biological Markers
Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, environmental exposure and its effects, disease diagnosis, metabolic processes, substance abuse, pregnancy, cell line development, epidemiologic studies, etc.
Rec A Recombinases
A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure.
Skin
Alkylation
Cricetinae
E2F1 Transcription Factor
An E2F transcription factor that interacts directly with RETINOBLASTOMA PROTEIN and CYCLIN A and activates GENETIC TRANSCRIPTION required for CELL CYCLE entry and DNA synthesis. E2F1 is involved in DNA REPAIR and APOPTOSIS.