Diffusion Magnetic Resonance Imaging
A diagnostic technique that incorporates the measurement of molecular diffusion (such as water or metabolites) for tissue assessment by MRI. The degree of molecular movement can be measured by changes of apparent diffusion coefficient (ADC) with time, as reflected by tissue microstructure. Diffusion MRI has been used to study BRAIN ISCHEMIA and tumor response to treatment.
Magnetic Resonance Imaging
Diffusion
The tendency of a gas or solute to pass from a point of higher pressure or concentration to a point of lower pressure or concentration and to distribute itself throughout the available space. Diffusion, especially FACILITATED DIFFUSION, is a major mechanism of BIOLOGICAL TRANSPORT.
Diffusion Tensor Imaging
The use of diffusion ANISOTROPY data from diffusion magnetic resonance imaging results to construct images based on the direction of the faster diffusing molecules.
Image Processing, Computer-Assisted
Brain
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Magnetic Resonance Spectroscopy
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING).
Magnetic Resonance Angiography
Non-invasive method of vascular imaging and determination of internal anatomy without injection of contrast media or radiation exposure. The technique is used especially in CEREBRAL ANGIOGRAPHY as well as for studies of other vascular structures.
Magnetic Resonance Imaging, Cine
A type of imaging technique used primarily in the field of cardiology. By coordinating the fast gradient-echo MRI sequence with retrospective ECG-gating, numerous short time frames evenly spaced in the cardiac cycle are produced. These images are laced together in a cinematic display so that wall motion of the ventricles, valve motion, and blood flow patterns in the heart and great vessels can be visualized.
Gadolinium DTPA
A complex of gadolinium with a chelating agent, diethylenetriamine penta-acetic acid (DTPA see PENTETIC ACID), that is given to enhance the image in cranial and spinal MRIs. (From Martindale, The Extra Pharmacopoeia, 30th ed, p706)
Brain Mapping
Image Interpretation, Computer-Assisted
Nuclear Magnetic Resonance, Biomolecular
Gadolinium
Image Enhancement
Anisotropy
A physical property showing different values in relation to the direction in or along which the measurement is made. The physical property may be with regard to thermal or electric conductivity or light refraction. In crystallography, it describes crystals whose index of refraction varies with the direction of the incident light. It is also called acolotropy and colotropy. The opposite of anisotropy is isotropy wherein the same values characterize the object when measured along axes in all directions.
Reproducibility of Results
The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.
Imaging, Three-Dimensional
The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.
Surface Plasmon Resonance
A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.
Sensitivity and Specificity
Facilitated Diffusion
The passive movement of molecules exceeding the rate expected by simple diffusion. No energy is expended in the process. It is achieved by the introduction of passively diffusing molecules to an enviroment or path that is more favorable to the movement of those molecules. Examples of facilitated diffusion are passive transport of hydrophilic substances across a lipid membrane through hydrophilic pores that traverse the membrane, and the sliding of a DNA BINDING PROTEIN along a strand of DNA.
Electron Spin Resonance Spectroscopy
A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING.
Fluorescence Resonance Energy Transfer
Magnetic Resonance Imaging, Interventional
Minimally invasive procedures guided with the aid of magnetic resonance imaging to visualize tissue structures.
Tomography, X-Ray Computed
Oxygen
Algorithms
Nerve Fibers, Myelinated
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves.