Loading...
Degenerin Sodium Channels: A family of mechanosensitive sodium channels found primarily in NEMATODES where they play a role in CELLULAR MECHANOTRANSDUCTION. Degenerin sodium channels are structurally-related to EPITHELIAL SODIUM CHANNELS and are named after the fact that loss of their activity results in cellular degeneration.Sodium Channels: Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function.Epithelial Sodium Channels: Sodium channels found on salt-reabsorbing EPITHELIAL CELLS that line the distal NEPHRON; the distal COLON; SALIVARY DUCTS; SWEAT GLANDS; and the LUNG. They are AMILORIDE-sensitive and play a critical role in the control of sodium balance, BLOOD VOLUME, and BLOOD PRESSURE.Acid Sensing Ion Channels: A family of proton-gated sodium channels that are primarily expressed in neuronal tissue. They are AMILORIDE-sensitive and are implicated in the signaling of a variety of neurological stimuli, most notably that of pain in response to acidic conditions.Sodium Channel Blockers: A class of drugs that act by inhibition of sodium influx through cell membranes. Blockade of sodium channels slows the rate and amplitude of initial rapid depolarization, reduces cell excitability, and reduces conduction velocity.Ion Channels: Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS.Sodium Channel Agonists: A class of drugs that stimulate sodium influx through cell membrane channels.Sodium: A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23.Ion Channel Gating: The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability.Amiloride: A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705)NAV1.5 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype that mediates the sodium ion PERMEABILITY of CARDIOMYOCYTES. Defects in the SCN5A gene, which codes for the alpha subunit of this sodium channel, are associated with a variety of CARDIAC DISEASES that result from loss of sodium channel function.NAV1.2 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype that mediates the sodium ion permeability of excitable membranes. Defects in the SCN2A gene which codes for the alpha subunit of this sodium channel are associated with benign familial infantile seizures type 3, and early infantile epileptic encephalopathy type 11.NAV1.6 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype found widely expressed in neurons of the central and peripheral nervous systems. Defects in the SCN8A gene which codes for the alpha subunit of this sodium channel are associated with ATAXIA and cognitive deficits.Calcium Channels: Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue.Voltage-Gated Sodium Channels: A family of membrane proteins that selectively conduct SODIUM ions due to changes in the TRANSMEMBRANE POTENTIAL DIFFERENCE. They typically have a multimeric structure with a core alpha subunit that defines the sodium channel subtype and several beta subunits that modulate sodium channel activity.NAV1.8 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype that is expressed in nociceptors, including spinal and trigeminal sensory neurons. It plays a role in the transmission of pain signals induced by cold, heat, and mechanical stimuli.NAV1.1 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype that is predominantly expressed in the CENTRAL NERVOUS SYSTEM. Defects in the SCN1A gene which codes for the alpha subunit of this sodium channel are associated with DRAVET SYNDROME, generalized epilepsy with febrile seizures plus, type 2 (GEFS+2), and familial hemiplegic migraine type 3.Mechanotransduction, Cellular: The process by which cells convert mechanical stimuli into a chemical response. It can occur in both cells specialized for sensing mechanical cues such as MECHANORECEPTORS, and in parenchymal cells whose primary function is not mechanosensory.NAV1.7 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype found widely expressed in nociceptive primary sensory neurons. Defects in the SCN9A gene, which codes for the alpha subunit of this sodium channel, are associated with several pain sensation-related disorders.NAV1.4 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype that mediates the sodium ion PERMEABILITY of SKELETAL MYOCYTES. Defects in the SCN4A gene, which codes for the alpha subunit of this sodium channel, are associated with several MYOTONIC DISORDERS.Nerve Tissue ProteinsSaxitoxin: A compound that contains a reduced purine ring system but is not biosynthetically related to the purine alkaloids. It is a poison found in certain edible mollusks at certain times; elaborated by GONYAULAX and consumed by mollusks, fishes, etc. without ill effects. It is neurotoxic and causes RESPIRATORY PARALYSIS and other effects in MAMMALS, known as paralytic SHELLFISH poisoning.Potassium Channels, Inwardly Rectifying: Potassium channels where the flow of K+ ions into the cell is greater than the outward flow.Oocytes: Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).Batrachotoxins: Batrachotoxin is the 20-alpha-bromobenzoate of batrachotoxin A; they are toxins from the venom of a small Colombian frog, Phyllobates aurotaenia, cause release of acetylcholine, destruction of synaptic vesicles and depolarization of nerve and muscle fibers.NAV1.3 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype found in neuronal tissue that mediates the sodium ion PERMEABILITY of excitable membranes.Calcium Channel Blockers: A class of drugs that act by selective inhibition of calcium influx through cellular membranes.Tetrodotoxin: An aminoperhydroquinazoline poison found mainly in the liver and ovaries of fishes in the order TETRAODONTIFORMES, which are eaten. The toxin causes paresthesia and paralysis through interference with neuromuscular conduction.Potassium Channel Blockers: A class of drugs that act by inhibition of potassium efflux through cell membranes. Blockade of potassium channels prolongs the duration of ACTION POTENTIALS. They are used as ANTI-ARRHYTHMIA AGENTS and VASODILATOR AGENTS.Chloride Channels: Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN.Electrophysiology: The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.Voltage-Gated Sodium Channel Blockers: A class of drugs that inhibit the activation of VOLTAGE-GATED SODIUM CHANNELS.Scorpion Venoms: Venoms from animals of the order Scorpionida of the class Arachnida. They contain neuro- and hemotoxins, enzymes, and various other factors that may release acetylcholine and catecholamines from nerve endings. Of the several protein toxins that have been characterized, most are immunogenic.Membrane Potentials: The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization).NAV1.9 Voltage-Gated Sodium Channel: A voltage-gated sodium channel subtype found in the neurons of the NERVOUS SYSTEM and DORSAL ROOT GANGLIA. It may play a role in the generation of heat and mechanical pain hypersensitivity.Potassium Channels, Voltage-Gated: Potassium channel whose permeability to ions is extremely sensitive to the transmembrane potential difference. The opening of these channels is induced by the membrane depolarization of the ACTION POTENTIAL.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Veratridine: A benzoate-cevane found in VERATRUM and Schoenocaulon. It activates SODIUM CHANNELS to stay open longer than normal.Voltage-Gated Sodium Channel beta-1 Subunit: A voltage-gated sodium channel beta subunit abundantly expressed in SKELETAL MUSCLE; HEART; and BRAIN. It non-covalently associates with voltage-gated alpha subunits. Defects in the SCN1B gene, which codes for this beta subunit, are associated with generalized epilepsy with febrile seizures plus, type 1, and Brugada syndrome 5.Patch-Clamp Techniques: An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.Calcium Channels, L-Type: Long-lasting voltage-gated CALCIUM CHANNELS found in both excitable and nonexcitable tissue. They are responsible for normal myocardial and vascular smooth muscle contractility. Five subunits (alpha-1, alpha-2, beta, gamma, and delta) make up the L-type channel. The alpha-1 subunit is the binding site for calcium-based antagonists. Dihydropyridine-based calcium antagonists are used as markers for these binding sites.Caenorhabditis elegans: A species of nematode that is widely used in biological, biochemical, and genetic studies.Epithelial Sodium Channel Blockers: A subclass of sodium channel blockers that are specific for EPITHELIAL SODIUM CHANNELS.KATP Channels: Heteromultimers of Kir6 channels (the pore portion) and sulfonylurea receptor (the regulatory portion) which affect function of the HEART; PANCREATIC BETA CELLS; and KIDNEY COLLECTING DUCTS. KATP channel blockers include GLIBENCLAMIDE and mitiglinide whereas openers include CROMAKALIM and minoxidil sulfate.