Loading...
Cyclin T: A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 9. Unlike traditional cyclins, which regulate the CELL CYCLE, type T cyclins appear to regulate transcription and are components of positive transcriptional elongation factor B.Cyclin D1: Protein encoded by the bcl-1 gene which plays a critical role in regulating the cell cycle. Overexpression of cyclin D1 is the result of bcl-1 rearrangement, a t(11;14) translocation, and is implicated in various neoplasms.Cyclin A: A cyclin subtype that has specificity for CDC2 PROTEIN KINASE and CYCLIN-DEPENDENT KINASE 2. It plays a role in progression of the CELL CYCLE through G1/S and G2/M phase transitions.Cyclin-Dependent Kinase 9: A multifunctional CDC2 kinase-related kinase that plays roles in transcriptional elongation, CELL DIFFERENTIATION, and APOPTOSIS. It is found associated with CYCLIN T and is a component of POSITIVE TRANSCRIPTIONAL ELONGATION FACTOR B.Cyclin E: A 50-kDa protein that complexes with CYCLIN-DEPENDENT KINASE 2 in the late G1 phase of the cell cycle.Positive Transcriptional Elongation Factor B: A transcriptional elongation factor complex that is comprised of a heterodimer of CYCLIN-DEPENDENT KINASE 9 and one of several CYCLINS including TYPE T CYCLINS and cyclin K. It functions by phosphorylating the carboxy-terminal domain of RNA POLYMERASE II.Cyclin B: A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.Cyclins: A large family of regulatory proteins that function as accessory subunits to a variety of CYCLIN-DEPENDENT KINASES. They generally function as ENZYME ACTIVATORS that drive the CELL CYCLE through transitions between phases. A subset of cyclins may also function as transcriptional regulators.Cyclin B1: A cyclin B subtype that colocalizes with MICROTUBULES during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.Cyclin D2: A cyclin D subtype which is regulated by GATA4 TRANSCRIPTION FACTOR. Experiments using KNOCKOUT MICE suggest a role for cyclin D2 in granulosa cell proliferation and gonadal development.Cyclin D3: A broadly expressed type D cyclin. Experiments using KNOCKOUT MICE suggest a role for cyclin D3 in LYMPHOCYTE development.Cyclin A1: A cyclin A subtype primarily found in male GERM CELLS. It may play a role in the passage of SPERMATOCYTES into meiosis I.Cyclin A2: A widely-expressed cyclin A subtype that functions during the G1/S and G2/M transitions of the CELL CYCLE.Cyclin D: A cyclin subtype that is specific for CYCLIN-DEPENDENT KINASE 4 and CYCLIN-DEPENDENT KINASE 6. Unlike most cyclins, cyclin D expression is not cyclical, but rather it is expressed in response to proliferative signals. Cyclin D may therefore play a role in cellular responses to mitogenic signals.Gene Products, tat: Trans-acting transcription factors produced by retroviruses such as HIV. They are nuclear proteins whose expression is required for viral replication. The tat protein stimulates LONG TERMINAL REPEAT-driven RNA synthesis for both viral regulatory and viral structural proteins. tat stands for trans-activation of transcription.tat Gene Products, Human Immunodeficiency Virus: Proteins encoded by the TAT GENES of the HUMAN IMMUNODEFICIENCY VIRUS.Cyclin-Dependent Kinases: Protein kinases that control cell cycle progression in all eukaryotes and require physical association with CYCLINS to achieve full enzymatic activity. Cyclin-dependent kinases are regulated by phosphorylation and dephosphorylation events.Cyclin G1: A cyclin G subtype that is constitutively expressed throughout the cell cycle. Cyclin G1 is considered a major transcriptional target of TUMOR SUPPRESSOR PROTEIN P53 and is highly induced in response to DNA damage.Cyclin G: A cyclin subtype that is found associated with CYCLIN-DEPENDENT KINASE 5; cyclin G associated kinase, and PROTEIN PHOSPHATASE 2.Cyclin C: A cyclin subtype that binds to the CYCLIN-DEPENDENT KINASE 3 and CYCLIN-DEPENDENT KINASE 8. Cyclin C plays a dual role as a transcriptional regulator and a G1 phase CELL CYCLE regulator.Cyclin B2: A cyclin B subtype that colocalizes with GOLGI APPARATUS during INTERPHASE and is transported into the CELL NUCLEUS at the end of the G2 PHASE.HIV Long Terminal Repeat: Regulatory sequences important for viral replication that are located on each end of the HIV genome. The LTR includes the HIV ENHANCER, promoter, and other sequences. Specific regions in the LTR include the negative regulatory element (NRE), NF-kappa B binding sites , Sp1 binding sites, TATA BOX, and trans-acting responsive element (TAR). The binding of both cellular and viral proteins to these regions regulates HIV transcription.Cyclin-Dependent Kinase 2: A key regulator of CELL CYCLE progression. It partners with CYCLIN E to regulate entry into S PHASE and also interacts with CYCLIN A to phosphorylate RETINOBLASTOMA PROTEIN. Its activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P27 and CYCLIN-DEPENDENT KINASE INHIBITOR P21.Cyclin G2: An unusual cyclin subtype that is found highly expressed in terminally differentiated cells. Unlike conventional cyclins increased expression of cyclin G2 is believed to cause a withdrawal of cells from the CELL CYCLE.Cyclin H: A cyclin subtype that is found as a component of a heterotrimeric complex containing cyclin-dependent kinase 7 and CDK-activating kinase assembly factor. The complex plays a role in cellular proliferation by phosphorylating several CYCLIN DEPENDENT KINASES at specific regulatory threonine sites.Cell Cycle: The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.Cyclin-Dependent Kinase 4: Cyclin-dependent kinase 4 is a key regulator of G1 PHASE of the CELL CYCLE. It partners with CYCLIN D to phosphorylate RETINOBLASTOMA PROTEIN. CDK4 activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P16.CDC2-CDC28 Kinases: A family of cell cycle-dependent kinases that are related in structure to CDC28 PROTEIN KINASE; S CEREVISIAE; and the CDC2 PROTEIN KINASE found in mammalian species.HIV-1: The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.CDC2 Protein Kinase: Phosphoprotein with protein kinase activity that functions in the G2/M phase transition of the CELL CYCLE. It is the catalytic subunit of the MATURATION-PROMOTING FACTOR and complexes with both CYCLIN A and CYCLIN B in mammalian cells. The maximal activity of cyclin-dependent kinase 1 is achieved when it is fully dephosphorylated.G1 Phase: The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Protein-Serine-Threonine Kinases: A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.Cell Cycle Proteins: Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.Phosphorylation: The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.RNA Polymerase II: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.Cyclin-Dependent Kinase Inhibitor p27: A cyclin-dependent kinase inhibitor that coordinates the activation of CYCLIN and CYCLIN-DEPENDENT KINASES during the CELL CYCLE. It interacts with active CYCLIN D complexed to CYCLIN-DEPENDENT KINASE 4 in proliferating cells, while in arrested cells it binds and inhibits CYCLIN E complexed to CYCLIN-DEPENDENT KINASE 2.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.S Phase: Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.Gene Expression Regulation, Viral: Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.Retinoblastoma Protein: Product of the retinoblastoma tumor suppressor gene. It is a nuclear phosphoprotein hypothesized to normally act as an inhibitor of cell proliferation. Rb protein is absent in retinoblastoma cell lines. It also has been shown to form complexes with the adenovirus E1A protein, the SV40 T antigen, and the human papilloma virus E7 protein.Cyclin I: A cyclin subtype that is found abundantly in post-mitotic tissues. In contrast to the classical cyclins, its level does not fluctuate during the cell cycle.Infectious Anemia Virus, Equine: A species of LENTIVIRUS, subgenus equine lentiviruses (LENTIVIRUSES, EQUINE), causing acute and chronic infection in horses. It is transmitted mechanically by biting flies, mosquitoes, and midges, and iatrogenically through unsterilized equipment. Chronic infection often consists of acute episodes with remissions.Dichlororibofuranosylbenzimidazole: An RNA polymerase II transcriptional inhibitor. This compound terminates transcription prematurely by selective inhibition of RNA synthesis. It is used in research to study underlying mechanisms of cellular regulation.Transcriptional Activation: Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.RNA-Binding Proteins: Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.Immunodeficiency Virus, Bovine: The type species of LENTIVIRUS, subgenus bovine lentiviruses (LENTIVIRUSES, BOVINE), found in cattle and causing lymphadenopathy, LYMPHOCYTOSIS, central nervous system lesions, progressive weakness, and emaciation. It has immunological cross-reactivity with other lentiviruses including HIV.Mitosis: A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Two-Hybrid System Techniques: Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.Oncogene Proteins: Proteins coded by oncogenes. They include proteins resulting from the fusion of an oncogene and another gene (ONCOGENE PROTEINS, FUSION).Genes, bcl-1: The B-cell leukemia/lymphoma-1 genes, associated with various neoplasms when overexpressed. Overexpression results from the t(11;14) translocation, which is characteristic of mantle zone-derived B-cell lymphomas. The human c-bcl-1 gene is located at 11q13 on the long arm of chromosome 11.Cyclin-Dependent Kinase 8: A CYCLIN C dependent kinase that is an important component of the mediator complex. The enzyme is activated by its interaction with CYCLIN C and plays a role in transcriptional regulation by phosphorylating RNA POLYMERASE II.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Genes, tat: DNA sequences that form the coding region for the protein responsible for trans-activation of transcription (tat) in human immunodeficiency virus (HIV).Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Cyclin-Dependent Kinase 6: Cyclin-dependent kinase 6 associates with CYCLIN D and phosphorylates RETINOBLASTOMA PROTEIN during G1 PHASE of the CELL CYCLE. It helps regulate the transition to S PHASE and its kinase activity is inhibited by CYCLIN-DEPENDENT KINASE INHIBITOR P18.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Cyclin-Dependent Kinase Inhibitor p21: A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.RNA, Small Nuclear: Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors.Casein Kinase I: A casein kinase that was originally described as a monomeric enzyme with a molecular weight of 30-40 kDa. Several ISOENZYMES of casein kinase I have been found which are encoded by separate genes. Many of the casein kinase I isoenzymes have been shown to play distinctive roles in intracellular SIGNAL TRANSDUCTION.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Virus Replication: The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.Terminal Repeat Sequences: Nucleotide sequences repeated on both the 5' and 3' ends of a sequence under consideration. For example, the hallmarks of a transposon are that it is flanked by inverted repeats on each end and the inverted repeats are flanked by direct repeats. The Delta element of Ty retrotransposons and LTRs (long terminal repeats) are examples of this concept.Nuclear Factor 90 Proteins: A family of double-stranded RNA-binding proteins that are related to NFATC TRANSCRIPTION FACTORS. In addition to binding to RNA, nuclear factor 90 proteins form heterodimeric complexes that regulate GENETIC TRANSCRIPTION and may play a role in T-CELL activation.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Cell Division: The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION.G2 Phase: The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point.NIH 3T3 Cells: A continuous cell line of high contact-inhibition established from NIH Swiss mouse embryo cultures. The cells are useful for DNA transfection and transformation studies. (From ATCC [Internet]. Virginia: American Type Culture Collection; c2002 [cited 2002 Sept 26]. Available from http://www.atcc.org/)Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Down-Regulation: A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Cell Proliferation: All of the processes involved in increasing CELL NUMBER including CELL DIVISION.3T3 Cells: Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.