Loading...
Core Binding Factors: Heterodimeric transcription factors containing a DNA-binding alpha subunits, (CORE BINDING FACTOR ALPHA SUBUNITS), along with a non-DNA-binding beta subunits, CORE BINDING FACTOR BETA SUBUNIT. Core Binding Factor regulates GENETIC TRANSCRIPTION of a variety of GENES involved primarily in CELL DIFFERENTIATION and CELL CYCLE progression.Core Binding Factor beta Subunit: A non-DNA binding transcription factor that is a subunit of core binding factor. It forms heterodimeric complexes with CORE BINDING FACTOR ALPHA SUBUNITS, and regulates GENETIC TRANSCRIPTION of a variety of GENES involved primarily in CELL DIFFERENTIATION and CELL CYCLE progression.Core Binding Factor alpha Subunits: A family of transcription factors that bind to the cofactor CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. Family members contain a highly conserved DNA-binding domain known as the runt domain. They can act as both activators and repressors of expression of GENES involved in CELL DIFFERENTIATION and CELL CYCLE progression.Core Binding Factor Alpha 2 Subunit: A transcription factor that dimerizes with the cofactor CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain. Runx1 is frequently mutated in human LEUKEMIAS.Core Binding Factor Alpha 1 Subunit: A transcription factor that dimerizes with CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain and is involved in genetic regulation of skeletal development and CELL DIFFERENTIATION.Transcription Factor AP-2: A family of DNA binding proteins that regulate expression of a variety of GENES during CELL DIFFERENTIATION and APOPTOSIS. Family members contain a highly conserved carboxy-terminal basic HELIX-TURN-HELIX MOTIF involved in dimerization and sequence-specific DNA binding.Smooth Muscle Myosins: Myosin type II isoforms found in smooth muscle.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Chromosomes, Human, Pair 16: A specific pair of GROUP E CHROMOSOMES of the human chromosome classification.Chromosome Inversion: An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Leukemia, Myeloid, Acute: Clonal expansion of myeloid blasts in bone marrow, blood, and other tissue. Myeloid leukemias develop from changes in cells that normally produce NEUTROPHILS; BASOPHILS; EOSINOPHILS; and MONOCYTES.Oncogene Proteins, Fusion: The GENETIC TRANSLATION products of the fusion between an ONCOGENE and another gene. The latter may be of viral or cellular origin.Chromosomes, Human, Pair 21: A specific pair of GROUP G CHROMOSOMES of the human chromosome classification.Neoplasm Proteins: Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Osteoblasts: Bone-forming cells which secrete an EXTRACELLULAR MATRIX. HYDROXYAPATITE crystals are then deposited into the matrix to form bone.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Enhancer Elements, Genetic: Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Translocation, Genetic: A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Osteogenesis: The process of bone formation. Histogenesis of bone including ossification.Osteocalcin: Vitamin K-dependent calcium-binding protein synthesized by OSTEOBLASTS and found primarily in BONES. Serum osteocalcin measurements provide a noninvasive specific marker of bone metabolism. The protein contains three residues of the amino acid gamma-carboxyglutamic acid (Gla), which, in the presence of CALCIUM, promotes binding to HYDROXYAPATITE and subsequent accumulation in BONE MATRIX.Proto-Oncogene Proteins: Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity.Leukemia, Myeloid: Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites.Pol1 Transcription Initiation Complex Proteins: Factors that form a preinitiation complex at promoters that are specifically transcribed by RNA POLYMERASE I.Alkaline Phosphatase: An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Core Binding Factor Alpha 3 Subunit: A transcription factor that dimerizes with the cofactor CORE BINDING FACTOR BETA SUBUNIT to form core binding factor. It contains a highly conserved DNA-binding domain known as the runt domain.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Telomeric Repeat Binding Protein 1: A ubiquitously expressed telomere-binding protein that is present at TELOMERES throughout the CELL CYCLE. It is a suppressor of telomere elongation and may be involved in stabilization of telomere length. It is structurally different from TELOMERIC REPEAT BINDING PROTEIN 2 in that it contains acidic N-terminal amino acid residues.G-Box Binding Factors: A family of transcription factors found primarily in PLANTS that bind to the G-box DNA sequence CACGTG or to a consensus sequence CANNTG.