A fatty acid coenzyme derivative which plays a key role in fatty acid oxidation and biosynthesis.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
A group of 16-carbon fatty acids that contain no double bonds.
Unsaturated hydrocarbons of the type Cn-H2n, indicated by the suffix -ene. (Grant & Hackh's Chemical Dictionary, 5th ed, p408)
A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating.
A long-chain fatty acid ester of carnitine which facilitates the transfer of long-chain fatty acids from cytoplasm into mitochondria during the oxidation of fatty acids.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
Covalent attachment of LIPIDS and FATTY ACIDS to other compounds and PROTEINS.
Enzymes from the transferase class that catalyze the transfer of acyl groups from donor to acceptor, forming either esters or amides. (From Enzyme Nomenclature 1992) EC 2.3.
Thiolester hydrolases are enzymes that catalyze the hydrolysis of thioester bonds, commonly found in acetyl-CoA and other coenzyme A derivatives, to produce free carboxylic acids and CoASH.
A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids.
An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21.
Salts and esters of the 16-carbon saturated monocarboxylic acid--palmitic acid.
Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.
A constituent of STRIATED MUSCLE and LIVER. It is an amino acid derivative and an essential cofactor for fatty acid metabolism.
Enzymes which transfer coenzyme A moieties from acyl- or acetyl-CoA to various carboxylic acceptors forming a thiol ester. Enzymes in this group are instrumental in ketone body metabolism and utilization of acetoacetate in mitochondria. EC 2.8.3.
Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.
Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
A key enzyme in SPHINGOLIPIDS biosynthesis, this enzyme catalyzes the pyridoxal-5'-phosphate-dependent condensation of L-SERINE and PALMITOYL COENZYME A to 3-dehydro-D-sphinganine. The enzyme consists of two different subunits.
Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)
The addition of an organic acid radical into a molecule.
A group of severe neurodegenerative diseases characterized by intracellular accumulation of autofluorescent wax-like lipid materials (CEROID; LIPOFUSCIN) in neurons. There are several subtypes based on mutations of the various genes, time of disease onset, and severity of the neurological defects such as progressive DEMENTIA; SEIZURES; and visual failure.
An oily liquid extracted from the seeds of the safflower, Carthamus tinctorius. It is used as a dietary supplement in the management of HYPERCHOLESTEROLEMIA. It is used also in cooking, as a salad oil, and as a vehicle for medicines, paints, varnishes, etc. (Dorland, 28th ed & Random House Unabridged Dictionary, 2d ed)
A butyryl-beta-alanine that can also be viewed as pantoic acid complexed with BETA ALANINE. It is incorporated into COENZYME A and protects cells against peroxidative damage by increasing the level of GLUTATHIONE.
Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.
A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems.
Derivatives of PHOSPHATIDYLCHOLINES obtained by their partial hydrolysis which removes one of the fatty acid moieties.
The rate dynamics in chemical or physical systems.
Enzyme catalyzing reversibly the hydrolysis of palmitoyl-CoA or other long-chain acyl coenzyme A compounds to yield CoA and palmitate or other acyl esters. The enzyme is involved in the esterification of fatty acids to form triglycerides. EC 3.1.2.2.
GLYCEROL esterified with FATTY ACIDS.
Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to a choline moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and choline and 2 moles of fatty acids.
Malonates are organic compounds containing a malonate group, which is a dicarboxylic acid functional group with the structure -OC(CH2COOH)2, and can form salts or esters known as malonates.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms.
Derivatives of BUTYRIC ACID that include a double bond between carbon 2 and 3 of the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.
Cyclic basic peptide related to VIOMYCIN. It is isolated from an induced mutant of Streptomyces griseoverticillatus var. tuberacticus and acts as an antitubercular agent with less ototoxicity than tuberactinomycin.
A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS.
The three membranes that cover the BRAIN and the SPINAL CORD. They are the dura mater, the arachnoid, and the pia mater.
Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.
Enzymes that catalyze the first step leading to the oxidation of succinic acid by the reversible formation of succinyl-CoA from succinate and CoA with the concomitant cleavage of ATP to ADP (EC 6.2.1.5) or GTP to GDP (EC 6.2.1.4) and orthophosphate. Itaconate can act instead of succinate and ITP instead of GTP.EC 6.2.1.-.