Repetitive nucleic acid sequences that are principal components of the archaeal and bacterial CRISPR-CAS SYSTEMS, which function as adaptive antiviral defense systems.
Copies of nucleic acid sequence that are arranged in opposing orientation. They may lie adjacent to each other (tandem) or be separated by some sequence that is not part of the repeat (hyphenated). They may be true palindromic repeats, i.e. read the same backwards as forward, or complementary which reads as the base complement in the opposite orientation. Complementary inverted repeats have the potential to form hairpin loop or stem-loop structures which results in cruciform structures (such as CRUCIFORM DNA) when the complementary inverted repeats occur in double stranded regions.
Protein components of the CRISPR-CAS SYSTEMS for anti-viral defense in ARCHAEA and BACTERIA. These are proteins that carry out a variety of functions during the creation and expansion of the CRISPR ARRAYS, the capture of new CRISPR SPACERS, biogenesis of SMALL INTERFERING RNA (CRISPR or crRNAs), and the targeting and silencing of invading viruses and plasmids. They include DNA HELICASES; RNA-BINDING PROTEINS; ENDONUCLEASES; and RNA and DNA POLYMERASES.
Adaptive antiviral defense mechanisms, in archaea and bacteria, based on DNA repeat arrays called CLUSTERED REGULARLY INTERSPACED SHORT PALINDROMIC REPEATS (CRISPR elements) that function in conjunction with CRISPR-ASSOCIATED PROTEINS (Cas proteins). Several types have been distinguished, including Type I, Type II, and Type III, based on signature motifs of CRISPR-ASSOCIATED PROTEINS.
Ribonucleic acid in archaea having regulatory and catalytic roles as well as involvement in protein synthesis.
A species of thermophilic, gram-positive bacteria found in MILK and milk products.
A reaction that severs one of the sugar-phosphate linkages of the phosphodiester backbone of RNA. It is catalyzed enzymatically, chemically, or by radiation. Cleavage may be exonucleolytic, or endonucleolytic.
Small kinetoplastid mitochondrial RNA that plays a major role in RNA EDITING. These molecules form perfect hybrids with edited mRNA sequences and possess nucleotide sequences at their 5'-ends that are complementary to the sequences of the mRNA's immediately downstream of the pre-edited regions.
Any of the DNA in between gene-coding DNA, including untranslated regions, 5' and 3' flanking regions, INTRONS, non-functional pseudogenes, and non-functional repetitive sequences. This DNA may or may not encode regulatory functions.
Viruses whose hosts are in the domain ARCHAEA.
A species of thermoacidophilic ARCHAEA in the family Sulfolobaceae, found in volcanic areas where the temperature is about 80 degrees C and SULFUR is present.
A reaction that severs one of the covalent sugar-phosphate linkages between NUCLEOTIDES that compose the sugar phosphate backbone of DNA. It is catalyzed enzymatically, chemically or by radiation. Cleavage may be exonucleolytic - removing the end nucleotide, or endonucleolytic - splitting the strand in two.
The genetic complement of a BACTERIA as represented in its DNA.
Copies of transposable elements interspersed throughout the genome, some of which are still active and often referred to as "jumping genes". There are two classes of interspersed repetitive elements. Class I elements (or RETROELEMENTS - such as retrotransposons, retroviruses, LONG INTERSPERSED NUCLEOTIDE ELEMENTS and SHORT INTERSPERSED NUCLEOTIDE ELEMENTS) transpose via reverse transcription of an RNA intermediate. Class II elements (or DNA TRANSPOSABLE ELEMENTS - such as transposons, Tn elements, insertion sequence elements and mobile gene cassettes of bacterial integrons) transpose directly from one site in the DNA to another.
Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES).
Viruses whose hosts are bacterial cells.
The genetic complement of an archaeal organism (ARCHAEA) as represented in its DNA.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
One of the three domains of life (the others being BACTERIA and Eukarya), formerly called Archaebacteria under the taxon Bacteria, but now considered separate and distinct. They are characterized by: (1) the presence of characteristic tRNAs and ribosomal RNAs; (2) the absence of peptidoglycan cell walls; (3) the presence of ether-linked lipids built from branched-chain subunits; and (4) their occurrence in unusual habitats. While archaea resemble bacteria in morphology and genomic organization, they resemble eukarya in their method of genomic replication. The domain contains at least four kingdoms: CRENARCHAEOTA; EURYARCHAEOTA; NANOARCHAEOTA; and KORARCHAEOTA.
A species of strictly anaerobic, hyperthermophilic archaea which lives in geothermally-heated marine sediments. It exhibits heterotropic growth by fermentation or sulfur respiration.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
Proteins found in any species of archaeon.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.
Enzymes which catalyze the hydrolases of ester bonds within DNA. EC 3.1.-.
Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed)
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive.
Proteins found in any species of bacterium.
The relationships of groups of organisms as reflected by their genetic makeup.
Genotypic differences observed among individuals in a population.
A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
Microsatellite repeats consisting of three nucleotides dispersed in the euchromatic arms of chromosomes.
Copies of DNA sequences which lie adjacent to each other in the same orientation (direct tandem repeats) or in the opposite direction to each other (INVERTED TANDEM REPEATS).
The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC).
An increased number of contiguous trinucleotide repeats in the DNA sequence from one generation to the next. The presence of these regions is associated with diseases such as FRAGILE X SYNDROME and MYOTONIC DYSTROPHY. Some CHROMOSOME FRAGILE SITES are composed of sequences where trinucleotide repeat expansion occurs.
Tandem arrays of moderately repetitive, short (10-60 bases) DNA sequences which are found dispersed throughout the GENOME, at the ends of chromosomes (TELOMERES), and clustered near telomeres. Their degree of repetition is two to several hundred at each locus. Loci number in the thousands but each locus shows a distinctive repeat unit.
Protein motif that contains a 33-amino acid long sequence that often occurs in tandem arrays. This repeating sequence of 33-amino acids was discovered in ANKYRIN where it is involved in interaction with the anion exchanger (ANION EXCHANGE PROTEIN 1, ERYTHROCYTE). Ankyrin repeats cooperatively fold into domains that mediate molecular recognition via protein-protein interactions.
A sequential pattern of amino acids occurring more than once in the same protein sequence.
A variety of simple repeat sequences that are distributed throughout the GENOME. They are characterized by a short repeat unit of 2-8 basepairs that is repeated up to 100 times. They are also known as short tandem repeats (STRs).