Cdh1 is an activator of the anaphase-promoting complex-cyclosome, and is involved in substrate recognition. It associates with the complex in late MITOSIS from anaphase through G1 to regulate activity of CYCLIN-DEPENDENT KINASES and to prevent premature DNA replication.
Protrusion of abdominal structures into the THORAX as a result of congenital or traumatic defects in the respiratory DIAPHRAGM.
An E3 ubiquitin ligase primarily involved in regulation of the metaphase-to-anaphase transition during MITOSIS through ubiquitination of specific CELL CYCLE PROTEINS. Enzyme activity is tightly regulated through subunits and cofactors, which modulate activation, inhibition, and substrate specificity. The anaphase-promoting complex, or APC-C, is also involved in tissue differentiation in the PLACENTA, CRYSTALLINE LENS, and SKELETAL MUSCLE, and in regulation of postmitotic NEURONAL PLASTICITY and excitability.
Complexes of enzymes that catalyze the covalent attachment of UBIQUITIN to other proteins by forming a peptide bond between the C-terminal GLYCINE of UBIQUITIN and the alpha-amino groups of LYSINE residues in the protein. The complexes play an important role in mediating the selective-degradation of short-lived and abnormal proteins. The complex of enzymes can be broken down into three components that involve activation of ubiquitin (UBIQUITIN-ACTIVATING ENZYMES), conjugation of ubiquitin to the ligase complex (UBIQUITIN-CONJUGATING ENZYMES), and ligation of ubiquitin to the substrate protein (UBIQUITIN-PROTEIN LIGASES).
Calcium-dependent cell adhesion proteins. They are important in the formation of ADHERENS JUNCTIONS between cells. Cadherins are classified by their distinct immunological and tissue specificities, either by letters (E- for epithelial, N- for neural, and P- for placental cadherins) or by numbers (cadherin-12 or N-cadherin 2 for brain-cadherin). Cadherins promote cell adhesion via a homophilic mechanism as in the construction of tissues and of the whole animal body.
Highly conserved proteins that specifically bind to and activate the anaphase-promoting complex-cyclosome, promoting ubiquitination and proteolysis of cell-cycle-regulatory proteins. Cdc20 is essential for anaphase-promoting complex activity, initiation of anaphase, and cyclin proteolysis during mitosis.
Ethers that are linked to a benzene ring structure.
Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.
A subunit of the anaphase-promoting complex whose primary function is to provide structural support for the catalytic and substrate-recognition modules of the complex. Apc5, along with Apc4, tethers the tetratricopeptide-coactivator binding subcomplex to the main structural subunit, Apc1.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
A subunit of the anaphase-promoting complex whose primary function is to provide structural support for the catalytic and substrate-recognition modules of the complex. Apc4, along with Apc5, tethers the tetratricopeptide-coactivator binding subcomplex to the main structural subunit, Apc1.
Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.
An enzyme that catalyzes the oxidation of 1-pyrroline-5-carboxylate to L-GLUTAMATE in the presence of NAD. Defects in the enzyme are the cause of hyperprolinemia II.
The largest subunit of the anaphase-promoting complex. It acts primarily as a scaffold for the proper organization and arrangement of subunits. The C-terminal region of Apc1 contains a series of tandem amino acid repeats that are also seen in the 26S proteasome regulatory particle, and may assist with forming and stabilizing protein-protein interactions.
Securin is involved in the control of the metaphase-anaphase transition during MITOSIS. It promotes the onset of anaphase by blocking SEPARASE function and preventing proteolysis of cohesin and separation of sister CHROMATIDS. Overexpression of securin is associated with NEOPLASTIC CELL TRANSFORMATION and tumor formation.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
A cyclin subtype that is transported into the CELL NUCLEUS at the end of the G2 PHASE. It stimulates the G2/M phase transition by activating CDC2 PROTEIN KINASE.
Tumors or cancer of the STOMACH.
A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.
A highly evolutionarily conserved subunit of the anaphase-promoting complex (APC-C) containing multiple 34-amino-acid tetratricopeptide repeats. These domains, also found in Apc subunits 6, 7, and 8, have been shown to mediate protein-protein interactions, suggesting that Apc3 may assist in coordinating the juxtaposition of the catalytic and substrate recognition module subunits relative to co-activators and APC-C inhibitors.
A family of structurally-related proteins that were originally identified by their ability to complex with cyclin proteins (CYCLINS). They share a common domain that binds specifically to F-BOX MOTIFS. They take part in SKP CULLIN F-BOX PROTEIN LIGASES, where they can bind to a variety of F-BOX PROTEINS.
Various conditions with the symptom of HEADACHE. Headache disorders are classified into major groups, such as PRIMARY HEADACHE DISORDERS (based on characteristics of their headache symptoms) and SECONDARY HEADACHE DISORDERS (based on their etiologies). (International Classification of Headache Disorders, 2nd ed. Cephalalgia 2004: suppl 1)
The act of ligating UBIQUITINS to PROTEINS to form ubiquitin-protein ligase complexes to label proteins for transport to the PROTEASOME ENDOPEPTIDASE COMPLEX where proteolysis occurs.
The phase of cell nucleus division following PROPHASE, when the breakdown of the NUCLEAR ENVELOPE occurs and the MITOTIC SPINDLE APPARATUS enters the nuclear region and attaches to the KINETOCHORES.
The phase of cell nucleus division following METAPHASE, in which the CHROMATIDS separate and migrate to opposite poles of the spindle.
Together with the Apc11 subunit, forms the catalytic core of the E3 ubiquitin ligase anaphase-promoting complex (APC-C). Its N-terminus has cullin domains which associate with the RING FINGER DOMAINS of Apc11. Apc2 also interacts with the E2 ubiquitin ligases involved in APC-C ubiquitination reactions.
Together with the Apc2 subunit, forms the catalytic core of the E3 ubiquitin ligase, anaphase-promoting complex-cyclosome. It has a RING H2 domain which interacts with the cullin domain of Apc2. Apc11 also interacts with the E2 ubiquitin ligases involved in APC-C ubiquitination reactions.
A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes.
Autosomal recessive hereditary disorders characterized by congenital SENSORINEURAL HEARING LOSS and RETINITIS PIGMENTOSA. Genetically and symptomatically heterogeneous, clinical classes include type I, type II, and type III. Their severity, age of onset of retinitis pigmentosa and the degree of vestibular dysfunction are variable.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Apc10 is necessary for coactivator-dependent substrate recognition by the anaphase-promoting complex-cyclosome. It binds the Apc2 subunit, which is a part of the catalytic core, and interacts with coactivators Cdh1 or Cdc20 to recruit substrates to the complex.
Mechanosensing organelles of hair cells which respond to fluid motion or fluid pressure changes. They have various functions in many different animals, but are primarily used in hearing.
Any detectable and heritable alteration in the lineage of germ cells. Mutations in these cells (i.e., "generative" cells ancestral to the gametes) are transmitted to progeny while those in somatic cells are not.
The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors.
Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose.
Presence of less than the normal amount of hair. (Dorland, 27th ed)
Gradual bilateral hearing loss associated with aging that is due to progressive degeneration of cochlear structures and central auditory pathways. Hearing loss usually begins with the high frequencies then progresses to sounds of middle and low frequencies.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES.
The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION.