The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains.
Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.
Enzymes that catalyze the S-adenosyl-L-methionine-dependent methylation of ribonucleotide bases within a transfer RNA molecule. EC 2.1.1.
Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.
A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS.
The sequential set of three nucleotides in TRANSFER RNA that interacts with its complement in MESSENGER RNA, the CODON, during translation in the ribosome.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
A competitive nine-member team sport including softball.
The science or philosophy of law. Also, the application of the principles of law and justice to health and medicine.
A violation of the criminal law, i.e., a breach of the conduct code specifically sanctioned by the state, which through its administrative agencies prosecutes offenders and imposes and administers punishments. The concept includes unacceptable actions whether prosecuted or going unpunished.
Penal institutions, or places of confinement for war prisoners.
Endosomes containing intraluminal vesicles which are formed by the inward budding of the endosome membrane. Multivesicular bodies (MVBs) may fuse with other organelles such as LYSOSOMES or fuse back with the PLASMA MEMBRANE releasing their contents by EXOCYTOSIS. The MVB intraluminal vesicles released into the extracellular environment are known as EXOSOMES.
Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.
A bibliographic database that includes MEDLINE as its primary subset. It is produced by the National Center for Biotechnology Information (NCBI), part of the NATIONAL LIBRARY OF MEDICINE. PubMed, which is searchable through NLM's Web site, also includes access to additional citations to selected life sciences journals not in MEDLINE, and links to other resources such as the full-text of articles at participating publishers' Web sites, NCBI's molecular biology databases, and PubMed Central.
A set of protein subcomplexes involved in PROTEIN SORTING of UBIQUITINATED PROTEINS into intraluminal vesicles of MULTIVESICULAR BODIES and in membrane scission during formation of intraluminal vesicles, during the final step of CYTOKINESIS, and during the budding of enveloped viruses. The ESCRT machinery is comprised of the protein products of Class E vacuolar protein sorting genes.
A publication issued at stated, more or less regular, intervals.
GLYCEROL esterified with a single acyl (FATTY ACIDS) chain.
Organelles in which the splicing and excision reactions that remove introns from precursor messenger RNA molecules occur. One component of a spliceosome is five small nuclear RNA molecules (U1, U2, U4, U5, U6) that, working in conjunction with proteins, help to fold pieces of RNA into the right shapes and later splice them into the message.
RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.
A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U4-U6 snRNP along with the U5 snRNP preassemble into a single 25S particle that binds to the U1 and U2 snRNPs and the substrate to form mature SPLICEOSOMES. There is also evidence for the existence of individual U4 or U6 snRNPs in addition to their organization as a U4-U6 snRNP.
Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).
The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm.
A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U5 snRNP along with U4-U6 snRNP preassemble into a single 25S particle that binds to the U1 and U2 snRNPs and the substrate to form SPLICEOSOMES.
A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U2 snRNP along with other small nuclear ribonucleoproteins (U1, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U2 snRNA forms base pairs with conserved sequence motifs at the branch point, which associates with a heat- and RNAase-sensitive factor in an early step of splicing.