Biogenesis: The origin of life. It includes studies of the potential basis for life in organic compounds but excludes studies of the development of altered forms of life through mutation and natural selection, which is BIOLOGICAL EVOLUTION.Mitochondrial Turnover: The cellular processes involved in adjustments to the MITOCHONDRIAL VOLUME, content, and activity, that depend on the energy demands of the cell.Mitochondria: Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed)Ribonuclease III: An endoribonuclease that is specific for double-stranded RNA. It plays a role in POST-TRANSCRIPTIONAL RNA PROCESSING of pre-RIBOSOMAL RNA and a variety of other RNA structures that contain double-stranded regions.Mitochondrial Proteins: Proteins encoded by the mitochondrial genome or proteins encoded by the nuclear genome that are imported to and resident in the MITOCHONDRIA.Peroxisomes: Microbodies which occur in animal and plant cells and in certain fungi and protozoa. They contain peroxidase, catalase, and allied enzymes. (From Singleton and Sainsbury, Dictionary of Microbiology and Molecular Biology, 2nd ed)Nuclear Respiratory Factor 1: A transcription factor that controls the expression of variety of proteins including CYTOCHROME C and 5-AMINOLEVULINATE SYNTHETASE. It plays an important role in maintenance of the RESPIRATORY CHAIN of MITOCHONDRIA.Saccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Ribosomes: Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION.Cell Nucleolus: Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed)Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.RNA Processing, Post-Transcriptional: Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein.Peroxisomal Disorders: A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders.Ribosome Subunits, Large, Eukaryotic: The large subunit of the 80s ribosome of eukaryotes. It is composed of the 28S RIBOSOMAL RNA, the 5.8S RIBOSOMAL RNA, the 5S RIBOSOMAL RNA, and about 50 different RIBOSOMAL PROTEINS.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.MicroRNAs: Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing.RNA, Ribosomal: The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)NF-E2-Related Factor 1: A basic-leucine zipper transcription factor that is involved in regulating inflammatory responses, MORPHOGENESIS, and HEME biosynthesis.Organelles: Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Mitochondria, Muscle: Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available.RNA Precursors: RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.Hermanski-Pudlak Syndrome: Syndrome characterized by the triad of oculocutaneous albinism (ALBINISM, OCULOCUTANEOUS); PLATELET STORAGE POOL DEFICIENCY; and lysosomal accumulation of ceroid lipofuscin.RNA-Binding Proteins: Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.DNA, Mitochondrial: Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins.Melanosomes: Melanin-containing organelles found in melanocytes and melanophores.Ribosomal Proteins: Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits.Argonaute Proteins: A family of RNA-binding proteins that has specificity for MICRORNAS and SMALL INTERFERING RNA molecules. The proteins take part in RNA processing events as core components of RNA-induced silencing complex.Fimbriae, Bacterial: Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX).Zellweger Syndrome: An autosomal recessive disorder due to defects in PEROXISOME biogenesis which involves more than 13 genes encoding peroxin proteins of the peroxisomal membrane and matrix. Zellweger syndrome is typically seen in the neonatal period with features such as dysmorphic skull; MUSCLE HYPOTONIA; SENSORINEURAL HEARING LOSS; visual compromise; SEIZURES; progressive degeneration of the KIDNEYS and the LIVER. Zellweger-like syndrome refers to phenotypes resembling the neonatal Zellweger syndrome but seen in children or adults with apparently intact peroxisome biogenesis.Nuclear Respiratory Factors: A family of transcription factors that control expression of a variety of nuclear GENES encoding proteins that function in the RESPIRATORY CHAIN of the MITOCHONDRIA.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.RNA Interference: A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Iron-Sulfur Proteins: A group of proteins possessing only the iron-sulfur complex as the prosthetic group. These proteins participate in all major pathways of electron transport: photosynthesis, respiration, hydroxylation and bacterial hydrogen and nitrogen fixation.Molecular Chaperones: A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Endoplasmic Reticulum: A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)Fimbriae Proteins: Proteins that are structural components of bacterial fimbriae (FIMBRIAE, BACTERIAL) or sex pili (PILI, SEX).DEAD-box RNA Helicases: A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function.Electron Transport Complex IV: A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane.Bacterial Proteins: Proteins found in any species of bacterium.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Intracellular Membranes: Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Arabidopsis Proteins: Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.Chloroplasts: Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Ribonucleoproteins, Small Nuclear: Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).Golgi Apparatus: A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Phagosomes: Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material.Organelle Size: The quantity of volume or surface area of ORGANELLES.Ribosome Subunits, Small, Eukaryotic: The small subunit of the 80s ribosome of eukaryotes. It is composed of the 18S RIBOSOMAL RNA and 32 different RIBOSOMAL PROTEINS.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Ribonucleoproteins, Small Nucleolar: Nucleolar RNA-protein complexes that function in pre-ribosomal RNA processing.Genetic Complementation Test: A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell.Vacuoles: Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion.RNA, Ribosomal, 18S: Constituent of the 40S subunit of eukaryotic ribosomes. 18S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes.Fungal Proteins: Proteins found in any species of fungus.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Lysosomes: A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured. Such rupture is supposed to be under metabolic (hormonal) control. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.Microbodies: Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes.Cell Line: Established cell cultures that have the potential to propagate indefinitely.RNA, Small Nucleolar: Small nuclear RNAs that are involved in the processing of pre-ribosomal RNA in the nucleolus. Box C/D containing snoRNAs (U14, U15, U16, U20, U21 and U24-U63) direct site-specific methylation of various ribose moieties. Box H/ACA containing snoRNAs (E2, E3, U19, U23, and U64-U72) direct the conversion of specific uridines to pseudouridine. Site-specific cleavages resulting in the mature ribosomal RNAs are directed by snoRNAs U3, U8, U14, U22 and the snoRNA components of RNase MRP and RNase P.Mitochondrial Size: The quantity of volume or surface area of MITOCHONDRIA.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Protein Biosynthesis: The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.Membrane Transport Proteins: Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)RNA, Plant: Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.Multivesicular Bodies: Endosomes containing intraluminal vesicles which are formed by the inward budding of the endosome membrane. Multivesicular bodies (MVBs) may fuse with other organelles such as LYSOSOMES or fuse back with the PLASMA MEMBRANE releasing their contents by EXOCYTOSIS. The MVB intraluminal vesicles released into the extracellular environment are known as EXOSOMES.Coiled Bodies: A distinct subnuclear domain enriched in splicesomal snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR) and p80-coilin.Mitochondrial Membranes: The two lipoprotein layers in the MITOCHONDRION. The outer membrane encloses the entire mitochondrion and contains channels with TRANSPORT PROTEINS to move molecules and ions in and out of the organelle. The inner membrane folds into cristae and contains many ENZYMES important to cell METABOLISM and energy production (MITOCHONDRIAL ATP SYNTHASE).Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Endosomes: Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.Multiprotein Complexes: Macromolecular complexes formed from the association of defined protein subunits.Microscopy, Electron, Transmission: Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen.Cell Respiration: The metabolic process of all living cells (animal and plant) in which oxygen is used to provide a source of energy for the cell.Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Microscopy, Electron: Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.RNA, Fungal: Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis.Gene Expression Regulation, Plant: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.Secretory Vesicles: Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Adenosine Triphosphatases: A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.Protein Subunits: Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly.Vesicular Transport Proteins: A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported.Thylakoids: Membranous cisternae of the CHLOROPLAST containing photosynthetic pigments, reaction centers, and the electron-transport chain. Each thylakoid consists of a flattened sac of membrane enclosing a narrow intra-thylakoid space (Lackie and Dow, Dictionary of Cell Biology, 2nd ed). Individual thylakoids are interconnected and tend to stack to form aggregates called grana. They are found in cyanobacteria and all plants.Ribosome Subunits: The two dissimilar sized ribonucleoprotein complexes that comprise a RIBOSOME - the large ribosomal subunit and the small ribosomal subunit. The eukaryotic 80S ribosome is composed of a 60S large subunit and a 40S small subunit. The bacterial 70S ribosome is composed of a 50S large subunit and a 30S small subunit.Cytoplasm: The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990)Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Transport Vesicles: Vesicles that are involved in shuttling cargo from the interior of the cell to the cell surface, from the cell surface to the interior, across the cell or around the cell to various locations.Gene Expression Regulation, Fungal: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.RNA Transport: The process of moving specific RNA molecules from one cellular compartment or region to another by various sorting and transport mechanisms.Ribosome Subunits, Small, Bacterial: The small subunit of eubacterial RIBOSOMES. It is composed of the 16S RIBOSOMAL RNA and about 23 different RIBOSOMAL PROTEINS.Mitochondrial Membrane Transport Proteins: Proteins involved in the transport of specific substances across the membranes of the MITOCHONDRIA.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Autophagy: The segregation and degradation of damaged or unwanted cytoplasmic constituents by autophagic vacuoles (cytolysosomes) composed of LYSOSOMES containing cellular components in the process of digestion; it plays an important role in BIOLOGICAL METAMORPHOSIS of amphibians, in the removal of bone by osteoclasts, and in the degradation of normal cell components in nutritional deficiency states.Oxidative Phosphorylation: Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds.RNA Helicases: A family of proteins that promote unwinding of RNA during splicing and translation.Ribosome Subunits, Small: The small ribonucleoprotein component of RIBOSOMES. It contains the MESSENGER RNA binding site and two TRANSFER RNA binding sites - one for the incoming AMINO ACYL TRNA (A site) and the other (P site) for the peptidyl tRNA carrying the elongating peptide chain.Adaptor Protein Complex 3: An adaptor protein complex found primarily on perinuclear compartments.RNA: A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)ATP-Binding Cassette Transporters: A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.Pili, Sex: Filamentous or elongated proteinaceous structures which extend from the cell surface in gram-negative bacteria that contain certain types of conjugative plasmid. These pili are the organs associated with genetic transfer and have essential roles in conjugation. Normally, only one or a few pili occur on a given donor cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed, p675) This preferred use of "pili" refers to the sexual appendage, to be distinguished from bacterial fimbriae (FIMBRIAE, BACTERIAL), also known as common pili, which are usually concerned with adhesion.Cytoplasmic Vesicles: Membrane-limited structures derived from the plasma membrane or various intracellular membranes which function in storage, transport or metabolism.Microscopy, Fluorescence: Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.rab GTP-Binding Proteins: A large family of MONOMERIC GTP-BINDING PROTEINS that play a key role in cellular secretory and endocytic pathways. EC 3.6.1.-.Sirtuin 1: A sirtuin family member found primarily in the CELL NUCLEUS. It is an NAD-dependent deacetylase with specificity towards HISTONES and a variety of proteins involved in gene regulation.Carbon-Sulfur Lyases: Enzymes that catalyze the cleavage of a carbon-sulfur bond by means other than hydrolysis or oxidation. EC 4.4.RNA, Ribosomal, 5.8S: Constituent of the 60S subunit of eukaryotic ribosomes. 5.8S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Gene Expression Regulation, Bacterial: Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Green Fluorescent Proteins: Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.Bacterial Outer Membrane Proteins: Proteins isolated from the outer membrane of Gram-negative bacteria.Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.Muscle, Skeletal: A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.Immunoblotting: Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.SMN Complex Proteins: A complex of proteins that assemble the SNRNP CORE PROTEINS into a core structure that surrounds a highly conserved RNA sequence found in SMALL NUCLEAR RNA. They are found localized in the GEMINI OF COILED BODIES and in the CYTOPLASM. The SMN complex is named after the Survival of Motor Neuron Complex Protein 1, which is a critical component of the complex.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.Plastids: Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Genes, Mitochondrial: Genes that are located on the MITOCHONDRIAL DNA. Mitochondrial inheritance is often referred to as maternal inheritance but should be differentiated from maternal inheritance that is transmitted chromosomally.Two-Hybrid System Techniques: Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions.Plant Proteins: Proteins found in plants (flowers, herbs, shrubs, trees, etc.). The concept does not include proteins found in vegetables for which VEGETABLE PROTEINS is available.Genes, Fungal: The functional hereditary units of FUNGI.Pichia: Yeast-like ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES isolated from exuded tree sap.Flagella: A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed)Protein Folding: Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.Immunoprecipitation: The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.Active Transport, Cell Nucleus: Gated transport mechanisms by which proteins or RNA are moved across the NUCLEAR MEMBRANE.Cytosol: Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.HEK293 Cells: A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.Microscopy, Immunoelectron: Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Mitochondrial Proton-Translocating ATPases: Proton-translocating ATPases responsible for ADENOSINE TRIPHOSPHATE synthesis in the MITOCHONDRIA. They derive energy from the respiratory chain-driven reactions that develop high concentrations of protons within the intermembranous space of the mitochondria.Lipid Metabolism: Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Protein Multimerization: The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS.Energy Metabolism: The chemical reactions involved in the production and utilization of various forms of energy in cells.Gene Silencing: Interruption or suppression of the expression of a gene at transcriptional or translational levels.Methyltransferases: A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1.Ribonucleoproteins: Complexes of RNA-binding proteins with ribonucleic acids (RNA).Cell Compartmentation: A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc.trans-Golgi Network: A network of membrane compartments, located at the cytoplasmic side of the GOLGI APPARATUS, where proteins and lipids are sorted for transport to various locations in the cell or cell membrane.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Citrate (si)-Synthase: Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC The space between the inner and outer membranes of a cell that is shared with the cell wall.Drosophila Proteins: Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.Mutant Proteins: Proteins produced from GENES that have acquired MUTATIONS.Mutagenesis, Insertional: Mutagenesis where the mutation is caused by the introduction of foreign DNA sequences into a gene or extragenic sequence. This may occur spontaneously in vivo or be experimentally induced in vivo or in vitro. Proviral DNA insertions into or adjacent to a cellular proto-oncogene can interrupt GENETIC TRANSLATION of the coding sequences or interfere with recognition of regulatory elements and cause unregulated expression of the proto-oncogene resulting in tumor formation.Chlorophyll: Porphyrin derivatives containing magnesium that act to convert light energy in photosynthetic organisms.Centrioles: Self-replicating, short, fibrous, rod-shaped organelles. Each centriole is a short cylinder containing nine pairs of peripheral microtubules, arranged so as to form the wall of the cylinder.Genes, Bacterial: The functional hereditary units of BACTERIA.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.GTP Phosphohydrolases: Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-.RNA-Induced Silencing Complex: A multicomponent, ribonucleoprotein complex comprised of one of the family of ARGONAUTE PROTEINS and the "guide strand" of the one of the 20- to 30-nucleotide small RNAs. RISC cleaves specific RNAs, which are targeted for degradation by homology to these small RNAs. Functions in regulating gene expression are determined by the specific argonaute protein and small RNA including siRNA (RNA, SMALL INTERFERING), miRNA (MICRORNA), or piRNA (PIWI-INTERACTING RNA).Mice, Knockout: Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.Mitochondria, Heart: The mitochondria of the myocardium.Subcellular Fractions: Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163)Karyopherins: A family of proteins involved in NUCLEOCYTOPLASMIC TRANSPORT. Karyopherins are heteromeric molecules composed two major types of components, ALPHA KARYOPHERINS and BETA KARYOPHERINS, that function together to transport molecules through the NUCLEAR PORE COMPLEX. Several other proteins such as RAN GTP BINDING PROTEIN and CELLULAR APOPTOSIS SUSCEPTIBILITY PROTEIN bind to karyopherins and participate in the transport process.Protein Sorting Signals: Amino acid sequences found in transported proteins that selectively guide the distribution of the proteins to specific cellular compartments.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Gene Knockout Techniques: Techniques to alter a gene sequence that result in an inactivated gene, or one in which the expression can be inactivated at a chosen time during development to study the loss of function of a gene.Chromogranin A: A type of chromogranin which was first isolated from CHROMAFFIN CELLS of the ADRENAL MEDULLA but is also found in other tissues and in many species including human, bovine, rat, mouse, and others. It is an acidic protein with 431 to 445 amino acid residues. It contains fragments that inhibit vasoconstriction or release of hormones and neurotransmitter, while other fragments exert antimicrobial actions.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Electron Transport Chain Complex Proteins: A complex of enzymes and PROTON PUMPS located on the inner membrane of the MITOCHONDRIA and in bacterial membranes. The protein complex provides energy in the form of an electrochemical gradient, which may be used by either MITOCHONDRIAL PROTON-TRANSLOCATING ATPASES or BACTERIAL PROTON-TRANSLOCATING ATPASES.Polyribosomes: A multiribosomal structure representing a linear array of RIBOSOMES held together by messenger RNA; (RNA, MESSENGER); They represent the active complexes in cellular protein synthesis and are able to incorporate amino acids into polypeptides both in vivo and in vitro. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)Eukaryotic Cells: Cells of the higher organisms, containing a true nucleus bounded by a nuclear membrane.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Mitochondrial Diseases: Diseases caused by abnormal function of the MITOCHONDRIA. They may be caused by mutations, acquired or inherited, in mitochondrial DNA or in nuclear genes that code for mitochondrial components. They may also be the result of acquired mitochondria dysfunction due to adverse effects of drugs, infections, or other environmental causes.Cell Wall: The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents.Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.Oxygen Consumption: The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346)AMP-Activated Protein Kinases: Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.Gene Knockdown Techniques: The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.Photosynthesis: The synthesis by organisms of organic chemical compounds, especially carbohydrates, from carbon dioxide using energy obtained from light rather than from the oxidation of chemical compounds. Photosynthesis comprises two separate processes: the light reactions and the dark reactions. In higher plants; GREEN ALGAE; and CYANOBACTERIA; NADPH and ATP formed by the light reactions drive the dark reactions which result in the fixation of carbon dioxide. (from Oxford Dictionary of Biochemistry and Molecular Biology, 2001)Eukaryotic Initiation Factors: Peptide initiation factors from eukaryotic organisms. Over twelve factors are involved in PEPTIDE CHAIN INITIATION, TRANSLATIONAL in eukaryotic cells. Many of these factors play a role in controlling the rate of MRNA TRANSLATION.Endoribonucleases: A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-.COP-Coated Vesicles: TRANSPORT VESICLES formed when cell-membrane coated pits (COATED PITS, CELL-MEMBRANE) invaginate and pinch off. The outer surface of these vesicles is covered with a lattice-like network of COP (coat protein complex) proteins, either COPI or COPII. COPI coated vesicles transport backwards from the cisternae of the GOLGI APPARATUS to the rough endoplasmic reticulum (ENDOPLASMIC RETICULUM, ROUGH), while COPII coated vesicles transport forward from the rough endoplasmic reticulum to the Golgi apparatus.RNA, Small Nuclear: Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors.Protozoan Proteins: Proteins found in any species of protozoan.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Mutagenesis: Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.