A tentative species in the genus lambda-like viruses, family SIPHOVIRIDAE.
Viruses whose hosts are bacterial cells.
A family of BACTERIOPHAGES and ARCHAEAL VIRUSES which are characterized by long, non-contractile tails.
A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection.
Viruses whose host is Escherichia coli.
Electron microscopy involving rapid freezing of the samples. The imaging of frozen-hydrated molecules and organelles permits the best possible resolution closest to the living state, free of chemical fixatives or stains.
The outer protein protective shell of a virus, which protects the viral nucleic acid.
Virulent bacteriophage and type species of the genus T4-like phages, in the family MYOVIRIDAE. It infects E. coli and is the best known of the T-even phages. Its virion contains linear double-stranded DNA, terminally redundant and circularly permuted.
Proteins that form the CAPSID of VIRUSES.
Virulent bacteriophage and type species of the genus T7-like phages, in the family PODOVIRIDAE, that infects E. coli. It consists of linear double-stranded DNA, terminally redundant, and non-permuted.
The phenomenon by which a temperate phage incorporates itself into the DNA of a bacterial host, establishing a kind of symbiotic relation between PROPHAGE and bacterium which results in the perpetuation of the prophage in all the descendants of the bacterium. Upon induction (VIRUS ACTIVATION) by various agents, such as ultraviolet radiation, the phage is released, which then becomes virulent and lyses the bacterium.
A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA.
A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion.
Virulent bacteriophage and sole member of the genus Cystovirus that infects Pseudomonas species. The virion has a segmented genome consisting of three pieces of doubled-stranded DNA and also a unique lipid-containing envelope.
Deoxyribonucleic acid that makes up the genetic material of viruses.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
The type species of the genus MICROVIRUS. A prototype of the small virulent DNA coliphages, it is composed of a single strand of supercoiled circular DNA, which on infection, is converted to a double-stranded replicative form by a host enzyme.
Proteins found in any species of virus.
A species of temperate bacteriophage in the genus P2-like viruses, family MYOVIRIDAE, which infects E. coli. It consists of linear double-stranded DNA with 19-base sticky ends.
Temperate bacteriophage of the genus INOVIRUS which infects enterobacteria, especially E. coli. It is a filamentous phage consisting of single-stranded DNA and is circularly permuted.
Viruses whose nucleic acid is DNA.
Bacteriophage in the genus T7-like phages, of the family PODOVIRIDAE, which is very closely related to BACTERIOPHAGE T7.
A technique of bacterial typing which differentiates between bacteria or strains of bacteria by their susceptibility to one or more bacteriophages.
A species of temperate bacteriophage in the genus P1-like viruses, family MYOVIRIDAE, which infects E. coli. It is the largest of the COLIPHAGES and consists of double-stranded DNA, terminally redundant, and circularly permuted.
Viruses whose host is Salmonella. A frequently encountered Salmonella phage is BACTERIOPHAGE P22.
Bacteriophages whose genetic material is RNA, which is single-stranded in all except the Pseudomonas phage phi 6 (BACTERIOPHAGE PHI 6). All RNA phages infect their host bacteria via the host's surface pili. Some frequently encountered RNA phages are: BF23, F2, R17, fr, PhiCb5, PhiCb12r, PhiCb8r, PhiCb23r, 7s, PP7, Q beta phage, MS2 phage, and BACTERIOPHAGE PHI 6.
The functional hereditary units of VIRUSES.
Rupture of bacterial cells due to mechanical force, chemical action, or the lytic growth of BACTERIOPHAGES.
Bacteriophage and type species in the genus Tectivirus, family TECTIVIRIDAE. They are specific for Gram-negative bacteria.
Viruses whose host is Pseudomonas. A frequently encountered Pseudomonas phage is BACTERIOPHAGE PHI 6.
Viruses whose host is Staphylococcus.
Viruses whose host is Bacillus. Frequently encountered Bacillus phages include bacteriophage phi 29 and bacteriophage phi 105.
A family of bacteriophages which are characterized by short, non-contractile tails.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Viruses whose host is Streptococcus.
Proteins found in the tail sections of DNA and RNA viruses. It is believed that these proteins play a role in directing chain folding and assembly of polypeptide chains.
The complete genetic complement contained in a DNA or RNA molecule in a virus.
A bacteriophage genus of the family LEVIVIRIDAE, whose viruses contain the short version of the genome and have a separate gene for cell lysis.
The adhesion of gases, liquids, or dissolved solids onto a surface. It includes adsorptive phenomena of bacteria and viruses onto surfaces as well. ABSORPTION into the substance may follow but not necessarily.
The folding of an organism's DNA molecule into a compact, orderly structure that fits within the limited space of a CELL or VIRUS PARTICLE.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The process by which a DNA molecule is duplicated.
Genomes of temperate BACTERIOPHAGES integrated into the DNA of their bacterial host cell. The prophages can be duplicated for many cell generations until some stimulus induces its activation and virulence.
A genus of filamentous bacteriophages of the family INOVIRIDAE. Organisms of this genus infect enterobacteria, PSEUDOMONAS; VIBRIO; and XANTHOMONAS.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992).
A subdiscipline of genetics which deals with the genetic mechanisms and processes of microorganisms.
Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Specific loci on both the bacterial DNA (attB) and the phage DNA (attP) which delineate the sites where recombination takes place between them, as the phage DNA becomes integrated (inserted) into the BACTERIAL DNA during LYSOGENY.
Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.
The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.
Method for measuring viral infectivity and multiplication in CULTURED CELLS. Clear lysed areas or plaques develop as the VIRAL PARTICLES are released from the infected cells during incubation. With some VIRUSES, the cells are killed by a cytopathic effect; with others, the infected cells are not killed but can be detected by their hemadsorptive ability. Sometimes the plaque cells contain VIRAL ANTIGENS which can be measured by IMMUNOFLUORESCENCE.
A species of gram-positive bacteria that is a common soil and water saprophyte.
The transfer of bacterial DNA by phages from an infected bacterium to another bacterium. This also refers to the transfer of genes into eukaryotic cells by viruses. This naturally occurring process is routinely employed as a GENE TRANSFER TECHNIQUE.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle.
Deoxyribonucleic acid that makes up the genetic material of bacteria.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
A family of trypsin-like SERINE ENDOPEPTIDASES that are expressed in a variety of cell types including human prostate epithelial cells. They are formed from tissue prokallikrein by action with TRYPSIN. They are highly similar to PROSTATE-SPECIFIC ANTIGEN.