Loading...
Arsenate Reductases: Oxidoreductases that specifically reduce arsenate ion to arsenite ion. Reduction of arsenate is a critical step for its biotransformation into a form that can be transported by ARSENITE TRANSPORTING ATPASES or complexed by specific sulfhydryl-containing proteins for the purpose of detoxification (METABOLIC DETOXIFICATION, DRUG). Arsenate reductases require reducing equivalents such as GLUTAREDOXIN or AZURIN.Arsenates: Inorganic or organic salts and esters of arsenic acid.Ion Pumps: A general class of integral membrane proteins that transport ions across a membrane against an electrochemical gradient.Arsenite Transporting ATPases: Efflux pumps that use the energy of ATP hydrolysis to pump arsenite across a membrane. They are primarily found in prokaryotic organisms, where they play a role in protection against excess intracellular levels of arsenite ions.Pteris: A plant genus of the family PTERIDACEAE. Members contain entkaurane DITERPENES. The name is similar to bracken fern (PTERIDIUM).Arsenic: A shiny gray element with atomic symbol As, atomic number 33, and atomic weight 75. It occurs throughout the universe, mostly in the form of metallic arsenides. Most forms are toxic. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), arsenic and certain arsenic compounds have been listed as known carcinogens. (From Merck Index, 11th ed)Multienzyme Complexes: Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.Arsenites: Inorganic salts or organic esters of arsenious acid.Glutaredoxins: A family of thioltransferases that contain two active site CYSTEINE residues, which either form a disulfide (oxidized form) or a dithiol (reduced form). They function as an electron carrier in the GLUTHIONE-dependent synthesis of deoxyribonucleotides by RIBONUCLEOTIDE REDUCTASES and may play a role in the deglutathionylation of protein thiols. The oxidized forms of glutaredoxins are directly reduced by the GLUTATHIONE.Oxidoreductases: The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)cdc25 Phosphatases: A subclass of dual specificity phosphatases that play a role in the progression of the CELL CYCLE. They dephosphorylate and activate CYCLIN-DEPENDENT KINASES.Thioredoxins: Hydrogen-donating proteins that participates in a variety of biochemical reactions including ribonucleotide reduction and reduction of PEROXIREDOXINS. Thioredoxin is oxidized from a dithiol to a disulfide when acting as a reducing cofactor. The disulfide form is then reduced by NADPH in a reaction catalyzed by THIOREDOXIN REDUCTASE.Nitrate Reductases: Oxidoreductases that are specific for the reduction of NITRATES.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Hydroxymethylglutaryl CoA Reductases: Enzymes that catalyze the reversible reduction of alpha-carboxyl group of 3-hydroxy-3-methylglutaryl-coenzyme A to yield MEVALONIC ACID.Ribonucleotide ReductasesCysteine: A thiol-containing non-essential amino acid that is oxidized to form CYSTINE.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Cytochrome-B(5) Reductase: A FLAVOPROTEIN oxidoreductase that occurs both as a soluble enzyme and a membrane-bound enzyme due to ALTERNATIVE SPLICING of a single mRNA. The soluble form is present mainly in ERYTHROCYTES and is involved in the reduction of METHEMOGLOBIN. The membrane-bound form of the enzyme is found primarily in the ENDOPLASMIC RETICULUM and outer mitochondrial membrane, where it participates in the desaturation of FATTY ACIDS; CHOLESTEROL biosynthesis and drug metabolism. A deficiency in the enzyme can result in METHEMOGLOBINEMIA.Nitrite Reductases: A group of enzymes that oxidize diverse nitrogenous substances to yield nitrite. (Enzyme Nomenclature, 1992) EC 1.Glutathione Reductase: Catalyzes the oxidation of GLUTATHIONE to GLUTATHIONE DISULFIDE in the presence of NADP+. Deficiency in the enzyme is associated with HEMOLYTIC ANEMIA. Formerly listed as EC 1.6.4.2.FMN Reductase: An enzyme that utilizes NADH or NADPH to reduce FLAVINS. It is involved in a number of biological processes that require reduced flavin for their functions such as bacterial bioluminescence. Formerly listed as EC 1.6.8.1 and EC 1.5.1.29.Thioredoxin-Disulfide Reductase: A FLAVOPROTEIN enzyme that catalyzes the oxidation of THIOREDOXINS to thioredoxin disulfide in the presence of NADP+. It was formerly listed as EC 1.6.4.5Adenosine Triphosphatases: A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.NADPH-Ferrihemoprotein Reductase: A flavoprotein that catalyzes the reduction of heme-thiolate-dependent monooxygenases and is part of the microsomal hydroxylating system. EC 1.6.2.4.Ferredoxin-NADP Reductase: An enzyme that catalyzes the oxidation and reduction of FERREDOXIN or ADRENODOXIN in the presence of NADP. EC 1.18.1.2 was formerly listed as EC 1.6.7.1 and EC 1.6.99.4.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Bacterial Proteins: Proteins found in any species of bacterium.Cytochrome Reductases