Loading...
Tyrosine Decarboxylase: A pyridoxal-phosphate protein that catalyzes the conversion of L-tyrosine to tyramine and carbon dioxide. The bacterial enzyme also acts on 3-hydroxytyrosine and, more slowly, on 3-hydroxyphenylalanine. (From Enzyme Nomenclature, 1992) EC 4.1.1.25.Aromatic-L-Amino-Acid Decarboxylases: An enzyme group with broad specificity. The enzymes decarboxylate a range of aromatic amino acids including dihydroxyphenylalanine (DOPA DECARBOXYLASE); TRYPTOPHAN; and HYDROXYTRYPTOPHAN.Carboxy-Lyases: Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.Dopa Decarboxylase: One of the AROMATIC-L-AMINO-ACID DECARBOXYLASES, this enzyme is responsible for the conversion of DOPA to DOPAMINE. It is of clinical importance in the treatment of Parkinson's disease.Amino Acid Transport System L: A sodium-independent neutral amino acid transporter system with specificity for large amino acids. One of the functions of the transporter system is to supply large neutral amino acids to the brain.Large Neutral Amino Acid-Transporter 1: A CD98 antigen light chain that when heterodimerized with CD98 antigen heavy chain (ANTIGENS, CD98 HEAVY CHAIN) forms a protein that mediates sodium-independent L-type amino acid transport.Antigens, CD98 Light Chains: A family of light chains that bind to the CD98 heavy chain (ANTIGENS, CD98 HEAVY CHAIN) to form a heterodimer. They convey functional specificity to the protein.Amino Acids, Cyclic: A class of amino acids characterized by a closed ring structure.Glutamate Decarboxylase: A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15.Antigens, CD98: A heterodimeric protein that is a cell surface antigen associated with lymphocyte activation. The initial characterization of this protein revealed one identifiable heavy chain (ANTIGENS, CD98 HEAVY CHAIN) and an indeterminate smaller light chain. It is now known that a variety of light chain subunits (ANTIGENS, CD98 LIGHT CHAINS) can dimerize with the heavy chain. Depending upon its light chain composition a diverse array of functions can be found for this protein. Functions include: type L amino acid transport, type y+L amino acid transport and regulation of cellular fusion.Amino Acid Transport Systems: Cellular proteins and protein complexes that transport amino acids across biological membranes.Amino Acids: Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins.Antigens, CD98 Heavy Chain: A transmembrane glycoprotein subunit that can dimerize with a variety of light chain subunits (ANTIGENS, CD98 LIGHT CHAINS). This protein subunit serves a diverse array of functions including amino acid transport and cell fusion. Its function is altered depending which of the light chain subunits it interacts with.Amino Acid Transport System y+Leucine: An essential branched-chain amino acid important for hemoglobin formation.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Histidine Decarboxylase: An enzyme that catalyzes the decarboxylation of histidine to histamine and carbon dioxide. It requires pyridoxal phosphate in animal tissues, but not in microorganisms. EC 4.1.1.22.Pyruvate Decarboxylase: Catalyzes the decarboxylation of an alpha keto acid to an aldehyde and carbon dioxide. Thiamine pyrophosphate is an essential cofactor. In lower organisms, which ferment glucose to ethanol and carbon dioxide, the enzyme irreversibly decarboxylates pyruvate to acetaldehyde. EC 4.1.1.1.Stereoisomerism: The phenomenon whereby compounds whose molecules have the same number and kind of atoms and the same atomic arrangement, but differ in their spatial relationships. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)Decarboxylation: The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Amino Acids, Aromatic: Amino acids containing an aromatic side chain.Ornithine Decarboxylase: A pyridoxal-phosphate protein, believed to be the rate-limiting compound in the biosynthesis of polyamines. It catalyzes the decarboxylation of ornithine to form putrescine, which is then linked to a propylamine moiety of decarboxylated S-adenosylmethionine to form spermidine.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Adenosylmethionine Decarboxylase: An enzyme that catalyzes the decarboxylation of S-adenosyl-L-methionine to yield 5'-deoxy-(5'-),3-aminopropyl-(1), methylsulfonium salt. It is one of the enzymes responsible for the synthesis of spermidine from putrescine. EC 4.1.1.50.Hydrocarbons, Aromatic: Organic compounds containing carbon and hydrogen in the form of an unsaturated, usually hexagonal ring structure. The compounds can be single ring, or double, triple, or multiple fused rings.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Cloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Selenomonas: Curved bacteria, usually crescent-shaped rods, with ends often tapered, occurring singly, in pairs, or short chains. They are non-encapsulated, non-sporing, motile, and ferment glucose. Selenomonas are found mainly in the human buccal cavity, the rumen of herbivores, and the cecum of pigs and several rodents. (From Bergey's Manual of Determinative Bacteriology, 9th ed)Pyridoxal Phosphate: This is the active form of VITAMIN B 6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (PYRIDOXAMINE).Amino Acid Substitution: The naturally occurring or experimentally induced replacement of one or more AMINO ACIDS in a protein with another. If a functionally equivalent amino acid is substituted, the protein may retain wild-type activity. Substitution may also diminish, enhance, or eliminate protein function. Experimentally induced substitution is often used to study enzyme activities and binding site properties.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Polyporales: An order of fungi in the phylum BASIDIOMYCOTA having macroscopic basidiocarps. The members are characterized by their saprophytic activities as decomposers, particularly in the degradation of CELLULOSE and LIGNIN. A large number of species in the order have been used medicinally. (From Alexopoulos, Introductory Mycology, 4th ed, pp504-68)Putrescine: A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine.Thiamine Pyrophosphate: The coenzyme form of Vitamin B1 present in many animal tissues. It is a required intermediate in the PYRUVATE DEHYDROGENASE COMPLEX and the KETOGLUTARATE DEHYDROGENASE COMPLEX.Ornithine: An amino acid produced in the urea cycle by the splitting off of urea from arginine.Kinetics: The rate dynamics in chemical or physical systems.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.PolyaminesBinding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Cadaverine: A foul-smelling diamine formed by bacterial decarboxylation of lysine.Bacterial Proteins: Proteins found in any species of bacterium.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Amino Acids, Essential: Amino acids that are not synthesized by the human body in amounts sufficient to carry out physiological functions. They are obtained from dietary foodstuffs.Tricarboxylic Acids: Organic compounds that are acyclic and contain three acid groups. A member of this class is citric acid which is the first product formed by reaction of pyruvate and oxaloacetate. (From Lehninger, Principles of Biochemistry, 1982, p443)Phylogeny: The relationships of groups of organisms as reflected by their genetic makeup.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Genes, Bacterial: The functional hereditary units of BACTERIA.Molecular Weight: The sum of the weight of all the atoms in a molecule.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Pyruvic Acid: An intermediate compound in the metabolism of carbohydrates, proteins, and fats. In thiamine deficiency, its oxidation is retarded and it accumulates in the tissues, especially in nervous structures. (From Stedman, 26th ed)Amino Acid Motifs: Commonly observed structural components of proteins formed by simple combinations of adjacent secondary structures. A commonly observed structure may be composed of a CONSERVED SEQUENCE which can be represented by a CONSENSUS SEQUENCE.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.Histidine: An essential amino acid that is required for the production of HISTAMINE.Lactobacillus: A genus of gram-positive, microaerophilic, rod-shaped bacteria occurring widely in nature. Its species are also part of the many normal flora of the mouth, intestinal tract, and vagina of many mammals, including humans. Pathogenicity from this genus is rare.Hydrogen-Ion Concentration: The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Structure-Activity Relationship: The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.Polycyclic Compounds: Compounds consisting of two or more fused ring structures.Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.Pseudomonas: A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.Amino Acids, Branched-Chain: Amino acids which have a branched carbon chain.Phenylalanine: An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.Acinetobacter: A genus of gram-negative bacteria of the family MORAXELLACEAE, found in soil and water and of uncertain pathogenicity.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.