The formation of one or more genetically identical organisms derived by vegetative reproduction from a single cell. The source nuclear material can be embryo-derived, fetus-derived, or taken from an adult somatic cell.
Methods of implanting a CELL NUCLEUS from a donor cell into an enucleated acceptor cell.
Cells from adult organisms that have been reprogrammed into a pluripotential state similar to that of EMBRYONIC STEM CELLS.
The process that reverts CELL NUCLEI of fully differentiated somatic cells to a pluripotent or totipotent state. This process can be achieved to a certain extent by NUCLEAR TRANSFER TECHNIQUES, such as fusing somatic cell nuclei with enucleated pluripotent embryonic stem cells or enucleated totipotent oocytes. GENE EXPRESSION PROFILING of the fused hybrid cells is used to determine the degree of reprogramming. Dramatic results of nuclear reprogramming include the generation of cloned mammals, such as Dolly the sheep in 1997.
Cells that can give rise to cells of the three different GERM LAYERS.
Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION.
The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS.
Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).
INFLAMMATION of the UDDER in cows.
The white liquid secreted by the mammary glands. It contains proteins, sugar, lipids, vitamins, and minerals.
An octamer transcription factor that is expressed primarily in totipotent embryonic STEM CELLS and GERM CELLS and is down-regulated during CELL DIFFERENTIATION.
A reverse developmental process in which terminally differentiated cells with specialized functions revert back to a less differentiated stage within their own CELL LINEAGE.
The medium-sized, submetacentric human chromosomes, called group C in the human chromosome classification. This group consists of chromosome pairs 6, 7, 8, 9, 10, 11, and 12 and the X chromosome.
Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.
Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization.
The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.
Any method used for determining the location of and relative distances between genes on a chromosome.
The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS.
A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper.
Morphological and physiological development of EMBRYOS.
The creation of embryos specifically for research purposes.
The technique of maintaining or growing mammalian EMBRYOS in vitro. This method offers an opportunity to observe EMBRYONIC DEVELOPMENT; METABOLISM; and susceptibility to TERATOGENS.
The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE.
Euploid female germ cells of an early stage of OOGENESIS, derived from primordial germ cells during ovarian differentiation. Oogonia undergo MEIOSIS and give rise to haploid OOCYTES
A subclass of SOX transcription factors that are expressed in neuronal tissue where they may play a role in the regulation of CELL DIFFERENTIATION. Members of this subclass are generally considered to be transcriptional activators.
Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.
Mapping of the KARYOTYPE of a cell.
The process of germ cell development in the female from the primordial germ cells through OOGONIA to the mature haploid ova (OVUM).
The large, metacentric human chromosomes, called group A in the human chromosome classification. This group consists of chromosome pairs 1, 2, and 3.
Established cell cultures that have the potential to propagate indefinitely.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
INFLAMMATION of the BREAST, or MAMMARY GLAND.
The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species.
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.
'Dairying' is not a term used in medical definitions; it refers to the practice of keeping dairy animals for milk production and its related processes, which is an agricultural or farming concept.
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.
Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER.
A unisexual reproduction without the fusion of a male and a female gamete (FERTILIZATION). In parthenogenesis, an individual is formed from an unfertilized OVUM that did not complete MEIOSIS. Parthenogenesis occurs in nature and can be artificially induced.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The gamete-producing glands, OVARY or TESTIS.
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.
Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
The transfer of mammalian embryos from an in vivo or in vitro environment to a suitable host to improve pregnancy or gestational outcome in human or animal. In human fertility treatment programs, preimplantation embryos ranging from the 4-cell stage to the blastocyst stage are transferred to the uterine cavity between 3-5 days after FERTILIZATION IN VITRO.
The process in developing sex- or gender-specific tissue, organ, or function after SEX DETERMINATION PROCESSES have set the sex of the GONADS. Major areas of sex differentiation occur in the reproductive tract (GENITALIA) and the brain.
An essential ribonucleoprotein reverse transcriptase that adds telomeric DNA to the ends of eukaryotic CHROMOSOMES.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS.
The short, metacentric human chromosomes, called group F in the human chromosome classification. This group consists of chromosome pairs 19 and 20.
The number of CELLS of a specific kind, usually measured per unit volume or area of sample.
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS.
Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES.
A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.
In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed)
A class of untranslated RNA molecules that are typically greater than 200 nucleotides in length and do not code for proteins. Members of this class have been found to play roles in transcriptional regulation, post-transcriptional processing, CHROMATIN REMODELING, and in the epigenetic control of chromatin.
Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female.
The short, submetacentric human chromosomes, called group E in the human chromosome classification. This group consists of chromosome pairs 16, 17, and 18.
An OOCYTE-containing structure in the cortex of the OVARY. The oocyte is enclosed by a layer of GRANULOSA CELLS providing a nourishing microenvironment (FOLLICULAR FLUID). The number and size of follicles vary depending on the age and reproductive state of the female. The growing follicles are divided into five stages: primary, secondary, tertiary, Graafian, and atretic. Follicular growth and steroidogenesis depend on the presence of GONADOTROPINS.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.
The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN.
The developmental history of specific differentiated cell types as traced back to the original STEM CELLS in the embryo.
ANIMALS whose GENOME has been altered by GENETIC ENGINEERING, or their offspring.
A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.
Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
An individual that contains cell populations derived from different zygotes.