Loading...
Activin Receptors, Type II: One of the two types of ACTIVIN RECEPTORS. They are membrane protein kinases belonging to the family of PROTEIN-SERINE-THREONINE KINASES. The major type II activin receptors are ActR-IIA and ActR-IIB.Activin Receptors: Receptors for ACTIVINS are membrane protein kinases belonging to the family of PROTEIN-SERINE-THREONINE KINASES, thus also named activin receptor-like kinases (ALK's). Activin receptors also bind TRANSFORMING GROWTH FACTOR BETA. As those transmembrane receptors of the TGF-beta superfamily (RECEPTORS, TRANSFORMING GROWTH FACTOR BETA), ALK's consist of two different but related protein kinases, Type I and Type II. Activins initiate cellular signal transduction by first binding to the type II receptors (ACTIVIN RECEPTORS, TYPE II ) which then recruit and phosphorylate the type I receptors (ACTIVIN RECEPTORS, TYPE I ) with subsequent activation of the type I kinase activity.Activins: Activins are produced in the pituitary, gonads, and other tissues. By acting locally, they stimulate pituitary FSH secretion and have diverse effects on cell differentiation and embryonic development. Activins are glycoproteins that are hetero- or homodimers of INHIBIN-BETA SUBUNITS.Activin Receptors, Type I: One of the two types of ACTIVIN RECEPTORS or activin receptor-like kinases (ALK'S). There are several type I activin receptors. The major active ones are ALK-2 (ActR-IA) and ALK-4 (ActR-IB).Myostatin: A growth differentiation factor that is a potent inhibitor of SKELETAL MUSCLE growth. It may play a role in the regulation of MYOGENESIS and in muscle maintenance during adulthood.Inhibins: Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectivelyInhibin-beta Subunits: They are glycopeptides and subunits in INHIBINS and ACTIVINS. Inhibins and activins belong to the transforming growth factor beta superfamily.Follistatin: A broadly distributed protein that binds directly to ACTIVINS. It functions as an activin antagonist, inhibits FOLLICLE STIMULATING HORMONE secretion, regulates CELL DIFFERENTIATION, and plays an important role in embryogenesis. Follistatin is a single glycosylated polypeptide chain of approximately 37-kDa and is not a member of the inhibin family (INHIBINS). Follistatin also binds and neutralizes many members of the TRANSFORMING GROWTH FACTOR BETA family.Receptors, Interleukin-1 Type I: An interleukin-1 receptor subtype that is involved in signaling cellular responses to INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The binding of this receptor to its ligand causes its favorable interaction with INTERLEUKIN-1 RECEPTOR ACCESSORY PROTEIN and the formation of an activated receptor complex.Receptors, Transforming Growth Factor beta: Cell-surface proteins that bind transforming growth factor beta and trigger changes influencing the behavior of cells. Two types of transforming growth factor receptors have been recognized. They differ in affinity for different members of the transforming growth factor beta family and in cellular mechanisms of action.Receptors, Growth Factor: Cell surface receptors that bind growth or trophic factors with high affinity, triggering intracellular responses which influence the growth, differentiation, or survival of cells.Smad2 Protein: A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. It regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.Receptors, Interleukin-1: Cell surface receptors that are specific for INTERLEUKIN-1. Included under this heading are signaling receptors, non-signaling receptors and accessory proteins required for receptor signaling. Signaling from interleukin-1 receptors occurs via interaction with SIGNAL TRANSDUCING ADAPTOR PROTEINS such as MYELOID DIFFERENTIATION FACTOR 88.Transforming Growth Factor beta: A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Receptors, Tumor Necrosis Factor, Type I: A tumor necrosis factor receptor subtype that has specificity for TUMOR NECROSIS FACTOR ALPHA and LYMPHOTOXIN ALPHA. It is constitutively expressed in most tissues and is a key mediator of tumor necrosis factor signaling in the vast majority of cells. The activated receptor signals via a conserved death domain that associates with specific TNF RECEPTOR-ASSOCIATED FACTORS in the CYTOPLASM.Protein-Serine-Threonine Kinases: A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.Receptors, Interleukin-1 Type II: An interleukin-1 receptor subtype that competes with the INTERLEUKIN-1 RECEPTOR TYPE I for binding to INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The interleukin-1 type II receptor appears to lack signal transduction capability. Therefore it may act as a "decoy" receptor that modulates the activity of its ligands. Both membrane-bound and soluble forms of the receptor have been identified.Nodal Protein: The founding member of the nodal signaling ligand family of proteins. Nodal protein was originally discovered in the region of the mouse embryo primitive streak referred to as HENSEN'S NODE. It is expressed asymmetrically on the left side in chordates and plays a critical role in the genesis of left-right asymmetry during vertebrate development.Bone Morphogenetic Proteins: Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.Interleukin-1 Receptor Accessory Protein: A protein that takes part in the formation of active interleukin-1 receptor complex. It binds specifically to INTERLEUKIN-1 and the INTERLEUKIN-1 RECEPTOR TYPE I at the cell surface to form a heterotrimeric complex that brings its cytoplasmic domain into contact with the cytoplasm domain of the TYPE-I INTERLEUKIN-1 RECEPTOR. Activation of intracellular signal transduction pathways from the receptor is believed to be driven by this form of cytoplasmic interaction.Smad Proteins: A family of proteins that are involved in the translocation of signals from TGF-BETA RECEPTORS; BONE MORPHOGENETIC PROTEIN RECEPTORS; and other surface receptors to the CELL NUCLEUS. They were originally identified as a class of proteins that are related to the mothers against decapentaplegic protein, Drosophila and sma proteins from CAENORHABDITIS ELEGANS.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Interleukin-1: A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Receptors, Tumor Necrosis Factor: Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.Interleukin 1 Receptor Antagonist Protein: A ligand that binds to but fails to activate the INTERLEUKIN 1 RECEPTOR. It plays an inhibitory role in the regulation of INFLAMMATION and FEVER. Several isoforms of the protein exist due to multiple ALTERNATIVE SPLICING of its mRNA.Mink: Carnivores of genus Mustela of the family MUSTELIDAE. The European mink, which has white upper and lower lips, was widely trapped for commercial purposes and is classified as endangered. The American mink, lacking a white upper lip, is farmed commercially.Bone Morphogenetic Protein Receptors, Type I: A subtype of bone morphogenetic protein receptors with high affinity for BONE MORPHOGENETIC PROTEINS. They can interact with and undergo PHOSPHORYLATION by BONE MORPHOGENETIC PROTEIN RECEPTORS, TYPE II. They signal primarily through RECEPTOR-REGULATED SMAD PROTEINS.Growth Differentiation Factors: A family of BONE MORPHOGENETIC PROTEIN-related proteins that are primarily involved in regulation of CELL DIFFERENTIATION.Receptors, Cell Surface: Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Mice, Inbred C57BLBone Morphogenetic Protein Receptors, Type II: A subtype of bone morphogenetic protein receptors with low affinity for BONE MORPHOGENETIC PROTEINS. They are constitutively active PROTEIN-SERINE-THREONINE KINASES that can interact with and phosphorylate TYPE I BONE MORPHOGENETIC PROTEIN RECEPTORS.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Smad3 Protein: A receptor-regulated smad protein that undergoes PHOSPHORYLATION by ACTIVIN RECEPTORS, TYPE I. Activated Smad3 can bind directly to DNA, and it regulates TRANSFORMING GROWTH FACTOR BETA and ACTIVIN signaling.Mesoderm: The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.Smad4 Protein: A signal transducing adaptor protein and tumor suppressor protein. It forms a complex with activated RECEPTOR-REGULATED SMAD PROTEINS. The complex then translocates to the CELL NUCLEUS and regulates GENETIC TRANSCRIPTION of target GENES.Sialoglycoproteins: Glycoproteins which contain sialic acid as one of their carbohydrates. They are often found on or in the cell or tissue membranes and participate in a variety of biological activities.Interferon Type I: Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA).Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Scavenger Receptors, Class B: A family of scavenger receptors that are predominately localized to CAVEOLAE of the PLASMA MEMBRANE and bind HIGH DENSITY LIPOPROTEINS.Growth Substances: Signal molecules that are involved in the control of cell growth and differentiation.In Situ Hybridization: A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.Immunohistochemistry: Histochemical localization of immunoreactive substances using labeled antibodies as reagents.Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.Embryonic Induction: The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS).Xenopus Proteins: Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.Collagen Type I: The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.Myositis Ossificans: A disease characterized by bony deposits or the ossification of muscle tissue.Receptors, Scavenger: A large group of structurally diverse cell surface receptors that mediate endocytic uptake of modified LIPOPROTEINS. Scavenger receptors are expressed by MYELOID CELLS and some ENDOTHELIAL CELLS, and were originally characterized based on their ability to bind acetylated LOW-DENSITY LIPOPROTEINS. They can also bind a variety of other polyanionic ligand. Certain scavenger receptors can internalize micro-organisms as well as apoptotic cells.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Glycoproteins: Conjugated protein-carbohydrate compounds including mucins, mucoid, and amyloid glycoproteins.Xenopus: An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Mice, Knockout: Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Granulosa Cells: Supporting cells for the developing female gamete in the OVARY. They are derived from the coelomic epithelial cells of the gonadal ridge. Granulosa cells form a single layer around the OOCYTE in the primordial ovarian follicle and advance to form a multilayered cumulus oophorus surrounding the OVUM in the Graafian follicle. The major functions of granulosa cells include the production of steroids and LH receptors (RECEPTORS, LH).Antigens, CD36: Leukocyte differentiation antigens and major platelet membrane glycoproteins present on MONOCYTES; ENDOTHELIAL CELLS; PLATELETS; and mammary EPITHELIAL CELLS. They play major roles in CELL ADHESION; SIGNAL TRANSDUCTION; and regulation of angiogenesis. CD36 is a receptor for THROMBOSPONDINS and can act as a scavenger receptor that recognizes and transports oxidized LIPOPROTEINS and FATTY ACIDS.