Acetyl-CoA Carboxylase: A carboxylating enzyme that catalyzes the conversion of ATP, acetyl-CoA, and HCO3- to ADP, orthophosphate, and malonyl-CoA. It is a biotinyl-protein that also catalyzes transcarboxylation. The plant enzyme also carboxylates propanoyl-CoA and butanoyl-CoA (From Enzyme Nomenclature, 1992) EC A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6.Biotin: A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk.Pyruvate Carboxylase: A biotin-dependent enzyme belonging to the ligase family that catalyzes the addition of CARBON DIOXIDE to pyruvate. It is occurs in both plants and animals. Deficiency of this enzyme causes severe psychomotor retardation and ACIDOSIS, LACTIC in infants. EC Citrate (pro-S)-Lyase: An enzyme that, in the presence of ATP and COENZYME A, catalyzes the cleavage of citrate to yield acetyl CoA, oxaloacetate, ADP, and ORTHOPHOSPHATE. This reaction represents an important step in fatty acid biosynthesis. This enzyme was formerly listed as EC AMethylmalonyl-CoA Decarboxylase: A carboxy-lyase that catalyzes the decarboxylation of (S)-2-Methyl-3-oxopropanoyl-CoA to propanoyl-CoA. In microorganisms the reaction can be coupled to the vectorial transport of SODIUM ions across the cytoplasmic membrane.AMP-Activated Protein Kinases: Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP.Fatty Acid Synthases: Enzymes that catalyze the synthesis of FATTY ACIDS from acetyl-CoA and malonyl-CoA derivatives.Acetyl Coenzyme A: Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.Malonyl Coenzyme A: A coenzyme A derivative which plays a key role in the fatty acid synthesis in the cytoplasmic and microsomal systems.Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Carbon-Carbon Ligases: Enzymes that catalyze the joining of two molecules by the formation of a carbon-carbon bond. These are the carboxylating enzymes and are mostly biotinyl-proteins. EC 6.4.Ribulose-Bisphosphate Carboxylase: A carboxy-lyase that plays a key role in photosynthetic carbon assimilation in the CALVIN-BENSON CYCLE by catalyzing the formation of 3-phosphoglycerate from ribulose 1,5-biphosphate and CARBON DIOXIDE. It can also utilize OXYGEN as a substrate to catalyze the synthesis of 2-phosphoglycolate and 3-phosphoglycerate in a process referred to as photorespiration.Fatty Acids: Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed)Phosphoenolpyruvate Carboxylase: An enzyme with high affinity for carbon dioxide. It catalyzes irreversibly the formation of oxaloacetate from phosphoenolpyruvate and carbon dioxide. This fixation of carbon dioxide in several bacteria and some plants is the first step in the biosynthesis of glucose. EC Metabolism: Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS.Adipose Tissue: Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white.Carboxy-Lyases: Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.Cytosol: Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components.Insulin: A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1).Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.Rats, Inbred Strains: Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding.Propionates: Derivatives of propionic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxyethane structure.Acetates: Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure.Acetate-CoA Ligase: An enzyme that catalyzes the formation of CoA derivatives from ATP, acetate, and CoA to form AMP, pyrophosphate, and acetyl CoA. It acts also on propionates and acrylates. EC Ligases: Enzymes that catalyze the joining of two molecules by the formation of a carbon-nitrogen bond. EC 6.3.Mitochondria, Liver: Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4)Acetylcarnitine: An acetic acid ester of CARNITINE that facilitates movement of ACETYL COA into the matrices of mammalian MITOCHONDRIA during the oxidation of FATTY ACIDS.CitratesRhizobium etli: A species of gram-negative bacteria and nitrogen innoculant of PHASEOLUS VULGARIS.Magnesium Compounds: Inorganic compounds that contain magnesium as an integral part of the molecule.Acetyltransferases: Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.Carboxyl and Carbamoyl Transferases: A group of enzymes that catalyze the transfer of carboxyl- or carbamoyl- groups. EC 2.1.3.Kinetics: The rate dynamics in chemical or physical systems.Acetyl-CoA C-Acetyltransferase: An enzyme that catalyzes the formation of acetoacetyl-CoA from two molecules of ACETYL COA. Some enzymes called thiolase or thiolase-I have referred to this activity or to the activity of ACETYL-COA C-ACYLTRANSFERASE.Carbon Isotopes: Stable carbon atoms that have the same atomic number as the element carbon, but differ in atomic weight. C-13 is a stable carbon isotope.Pyruvate Carboxylase Deficiency Disease: An autosomal recessive metabolic disorder caused by absent or decreased PYRUVATE CARBOXYLASE activity, the enzyme that regulates gluconeogenesis, lipogenesis, and neurotransmitter synthesis. Clinical manifestations include lactic acidosis, seizures, respiratory distress, marked psychomotor delay, periodic HYPOGLYCEMIA, and hypotonia. The clinical course may be similar to LEIGH DISEASE. (From Am J Hum Genet 1998 Jun;62(6):1312-9)Acyl Coenzyme A: S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.Ribulosephosphates: Ribulose substituted by one or more phosphoric acid moieties.Citric Acid Cycle: A series of oxidative reactions in the breakdown of acetyl units derived from GLUCOSE; FATTY ACIDS; or AMINO ACIDS by means of tricarboxylic acid intermediates. The end products are CARBON DIOXIDE, water, and energy in the form of phosphate bonds.Caprylates: Derivatives of caprylic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated eight carbon aliphatic structure.Mevalonic AcidMultienzyme Complexes: Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES.Acetylation: Formation of an acetyl derivative. (Stedman, 25th ed)Acetylesterase: An enzyme that catalyzes the conversion of acetate esters and water to alcohols and acetate. EC Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Fatty Acid Synthase, Type II: The form of fatty acid synthase complex found in BACTERIA; FUNGI; and PLANTS. Catalytic steps are like the animal form but the protein structure is different with dissociated enzymes encoded by separate genes. It is a target of some ANTI-INFECTIVE AGENTS which result in disruption of the CELL MEMBRANE and CELL WALL.Vitamin K: A lipid cofactor that is required for normal blood clotting. Several forms of vitamin K have been identified: VITAMIN K 1 (phytomenadione) derived from plants, VITAMIN K 2 (menaquinone) from bacteria, and synthetic naphthoquinone provitamins, VITAMIN K 3 (menadione). Vitamin K 3 provitamins, after being alkylated in vivo, exhibit the antifibrinolytic activity of vitamin K. Green leafy vegetables, liver, cheese, butter, and egg yolk are good sources of vitamin K.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.PentosephosphatesAdenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.Carbon Dioxide: A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals.Multiple Carboxylase Deficiency: A deficiency in the activities of biotin-dependent enzymes (propionyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, and PYRUVATE CARBOXYLASE) due to one of two defects in BIOTIN metabolism. The neonatal form is due to HOLOCARBOXYLASE SYNTHETASE DEFICIENCY. The late-onset form is due to BIOTINIDASE DEFICIENCY.Organophosphates: Carbon-containing phosphoric acid derivatives. Included under this heading are compounds that have CARBON atoms bound to one or more OXYGEN atoms of the P(=O)(O)3 structure. Note that several specific classes of endogenous phosphorus-containing compounds such as NUCLEOTIDES; PHOSPHOLIPIDS; and PHOSPHOPROTEINS are listed elsewhere.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Catalysis: The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.PyruvatesEnzyme Activation: Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme.Rhodospirillum rubrum: Vibrio- to spiral-shaped phototrophic bacteria found in stagnant water and mud exposed to light.MalatesCarbon Radioisotopes: Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Lipids: A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)Plants: Multicellular, eukaryotic life forms of kingdom Plantae (sensu lato), comprising the VIRIDIPLANTAE; RHODOPHYTA; and GLAUCOPHYTA; all of which acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Avidin: A specific protein in egg albumin that interacts with BIOTIN to render it unavailable to mammals, thereby producing biotin deficiency.Dietary Carbohydrates: Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277)Coenzyme A Ligases: Enzymes that catalyze the formation of acyl-CoA derivatives. EC 6.2.1.