Regulation of Ca2+ transport by sarcoplasmic reticulum Ca2+-ATPase at limiting [Ca2+]. (49/8763)

The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  (+info)

Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis. (50/8763)

The metallo-beta-lactamases require divalent cations such as zinc or cadmium for hydrolyzing the amide bond of beta-lactam antibiotics. The crystal structure of the Zn2+ -bound enzyme from Bacteroides fragilis contains a binuclear zinc center in the active site. A hydroxide, coordinated to both zinc atoms, is proposed as the moiety that mounts the nucleophilic attack on the carbonyl carbon atom of the beta-lactam bond of the substrate. It was previously reported that the replacement of the active site Cys181 by a serine residue severely impaired catalysis while atomic absorption measurements indicated that binding of the two zinc ions remained intact. Contradicting data emerge from recent mass spectrometry results, which show that only a single zinc ion binds to the C181S metallo-beta-lactamase. In the current study, the C181S mutant enzyme was examined at the atomic level by determining the crystal structure at 2.6 A resolution. The overall structure of the mutant enzyme is the same as that of the wild-type enzyme. At the mutation site, the side chain of Ser181 occupies the same position as that of the side chain of Cys181 in the wild-type protein. One zinc ion, Zn1, is present in the crystal structure; however, the site of the second zinc ion, Zn2 is unoccupied. A water molecule is associated with Zn1, reminiscent of the hydroxide seen in the structure of the wild-type enzyme but farther from the metal. The position of the water molecule is off the plane of the carboxylate group of Asp103; therefore, the water molecule may be less nucleophilic than a water molecule which is coplanar with the carboxylate group.  (+info)

Helicity of alpha(404-451) and beta(394-445) tubulin C-terminal recombinant peptides. (51/8763)

We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.  (+info)

Decorin is a Zn2+ metalloprotein. (52/8763)

Decorin is ubiquitously distributed in the extracellular matrix of mammals and a member of the proteoglycan family characterized by a core protein dominated by leucine-rich repeat motifs. We show here that decorin extracted from bovine tissues under denaturing conditions or produced in recombinant "native" form by cultured mammalian cells has a high affinity for Zn2+ as demonstrated by equilibrium dialyses. The Zn2+-binding sites are localized to the N-terminal domain of the core protein that contains 4 Cys residues in a spacing reminiscent of a zinc finger. A recombinant 41-amino acid long peptide representing the N-terminal domain of decorin has full Zn2+ binding activity and binds two Zn2+ ions with an average KD of 3 x 10(-7) M. Binding of Zn2+ to this peptide results in a change in secondary structure as shown by circular dichroism spectroscopy. Biglycan, a proteoglycan that is structurally closely related to decorin contains a similar high affinity Zn2+-binding segment, whereas the structurally more distantly related proteoglycans, epiphycan and osteoglycin, do not bind Zn2+ with high affinity.  (+info)

Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. (53/8763)

Human recombinant tissue plasminogen activator (tPA) may benefit ischemic stroke patients by dissolving clots. However, independent of thrombolysis, tPA may also have deleterious effects on neurons by promoting excitotoxicity. Zinc neurotoxicity has been shown to be an additional key mechanism in brain injuries. Hence, if tPA affects zinc neurotoxicity, this may provide additional insights into its effect on neuronal death. Independent of its proteolytic action, tPA markedly attenuated zinc-induced cell death in cortical culture, and, when injected into cerebrospinal fluid, also reduced kainate seizure-induced hippocampal neuronal death in adult rats.  (+info)

Aminopeptidase B is structurally related to leukotriene-A4 hydrolase but is not a bifunctional enzyme with epoxide hydrolase activity. (54/8763)

Aminopeptidase B (Ap B; EC 3.4.11.6) is a zinc-binding protein that contains the consensus sequence HEXXHX18E (324-347), conserved among the M1 family of metallopeptidases. To determine if these putative zinc-binding residues (His324, His328 and Glu347) and the active-site Glu325 are essential for the enzyme activity, we replaced the histidines with tyrosines and the glutamic acid residues with alanines using site-directed mutagenesis. The cDNAs were expressed in Escherichia coli, and the resulting recombinant proteins, named H324Y, E325A, H328Y and E347A, were purified to apparent homogeneity. None of the expressed mutated proteins showed aminopeptidase activity. The E325A enzyme contained 1 mol of zinc per mol of protein, and the other three mutants, H324Y, H328Y and E347A, did not contain significant amounts of zinc, as determined by atomic absorption spectrometry. From sequence-homology searches, Ap B is known to be closely related to leukotriene (LT)-A4 hydrolase (EC 3.3.2.6). We examined human placental Ap B and recombinant rat Ap B, both of which had been purified previously [Fukasawa, Fukasawa, Kanai, Fujii and Harada (1996) J. Biol. Chem. 271, 30731-30735], to determine whether or not they had epoxide hydrolase activities. However, neither enzyme hydrolysed LTA4 into LTB4. We then replaced some amino acids in the domain of the rat enzyme similar to the LTA4-binding site of LTA4 hydrolase. However, these mutants, Y408F, N409S and NE409-410SS also did not possess any epoxide hydrolase activity. We concluded that Ap B is an M1-family zinc metallopeptidase without epoxide hydrolase activity.  (+info)

Differences in cadmium transport to the testis, epididymis, and brain in cadmium-sensitive and -resistant murine strains 129/J and A/J. (55/8763)

Although most animals with scrotal testes are susceptible to cadmium-induced testicular toxicity, strain-related differences are seen in mice. Resistant murine strains demonstrate a decreased cadmium concentration in the testis and also in the epididymis and seminal vesicle. In this study we analyzed cadmium transport into tissues with a vascular barrier, the testis, epididymis, and brain, in an attempt to characterize the mechanisms of strain resistance to cadmium-induced testicular toxicity. In the resistant murine strain A/J, 109Cd transport (administered as 109CdCl2) was significantly attenuated in the testis, epididymis, and brain, when compared to the sensitive murine strain 129/J. The unidirectional influx constant (Ki, in microliter g-1 min-1) for 109Cd was 0.01929 in the A/J testis as compared with 1.174 in the 129/J testis (P <.0001). The percentage of a 109Cd dose that reached the A/J testis by 60 min was over 10 times less than that which reached the 129/J testis. The transport system used by cadmium in the 129/J testis was saturable, with 20 microM unlabeled cadmium chloride inhibiting transport by over 60%. The transporter was competitively inhibited by zinc (P =. 00017), but not by calcium, indicating a specificity in ion transport. Studies with isolated tubules and analysis of testicular fluid compartments demonstrated no significant difference in cadmium uptake or efflux between the strains when corrected for the amount of 109Cd entering the testis. Therefore, murine strain differences in testicular sensitivity to cadmium appear to be related to the variable presence of a transport system for cadmium in the testicular vasculature.  (+info)

Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. (56/8763)

Recently, zinc has been shown to modulate antagonist drug interactions with the D1 dopamine receptor (Schetz and Sibley, 1997) and the dopamine transporter (Norregaard et al., 1998). We now demonstrate that zinc also reversibly and dose-dependently modulates the specific binding of the butyrophenone antagonist [3H]methylspiperone to all D2-like dopamine receptors: D2L, D3, and D4. The molecular mechanisms of zinc regulation of these D2-like receptor subtypes are distinct because zinc inhibition of [3H]methylspiperone binding to the D4 receptor is noncompetitive by both equilibrium and kinetic measures (lower Bmax and essentially no change in koff), whereas the corresponding inhibition of zinc at D2L and D3 receptors is primarily characterized by competitive allosterism (increases in KD and koff). Interestingly, thermodynamic measurements reveal that the macroscopic properties of zinc binding are entropy-driven for all receptor subtypes, despite their having distinct molecular mechanisms. Zinc also reduces the binding affinity of the D2L receptor for [3H]raclopride, a structurally different antagonist of the substituted benzamide class. Sodium ions negatively modulate zinc inhibition of both sodium-insensitive [3H]methylspiperone binding and sodium-sensitive [3H]raclopride binding. In addition to its demonstrated effects on antagonist binding in membrane preparations, zinc also retards the functional effects of antagonist at the D2L receptor in intact cells. These findings suggest that synaptic zinc may be a factor influencing the effectiveness of therapies that rely on dopamine receptor antagonists.  (+info)