The inhibition of monoamine oxidase activity by various antidepressants: differences found in various mammalian species. (1/19)

The effects of the antidepressant drugs zimeldine, imipramine, maprotiline or nomifensine on mitochondrial monoamine oxidase (MAO) activity in mouse, rat, dog and monkey brains were compared in vitro. Mouse, rat, dog and monkey brain MAO-B activities were inhibited by zimeldine more potently than MAO-A activity. Imipramine inhibited MAO-B more potently than MAO-A activity in mouse and rat brains. When dog and monkey brains were investigated, MAO-A activity was inhibited more potently than MAO-B activity at high concentrations of imipramine, while at low concentrations, MAO-B activity was more potently inhibited. Maprotiline and nomifensine inhibited mouse and rat brain MAO-B activity more potently than MAO-A activity, while the inverse was true for dog and monkey brains. All four drugs are competitive inhibitors of MAO-A, but noncompetitive inhibitors of MAO-B in all animal brains. The respective Ki values of these reagents for monkey brain MAO-A and MAO-B were low compared to those of mouse, rat and dog. These results indicate that monkey brain MAOs are more sensitive to antidepressant drugs than those in rodent brain.  (+info)

Antidepressant drug-induced alterations in neuron-localized tumor necrosis factor-alpha mRNA and alpha(2)-adrenergic receptor sensitivity. (2/19)

The pleiotropic cytokine tumor necrosis factor-alpha (TNF) and alpha(2)-adrenergic receptor activation regulate norepinephrine (NE) release from neurons in the central nervous system. The present study substantiates the role of TNF as a neuromodulator and demonstrates a reciprocally permissive relationship between the biological effects of TNF and alpha(2)-adrenergic receptor activation as a mechanism of action of antidepressant drugs. Immunohistochemical analysis and in situ hybridization reveal that administration of the antidepressant drug desipramine decreases the accumulation of constitutively expressed TNF mRNA in neurons of the rat brain. Superfusion and electrical field stimulation were applied to a series of rat hippocampal brain slices to study the regulation of [(3)H]NE release. Superfusion of hippocampal slices obtained from rats chronically administered the antidepressant drug zimelidine demonstrates that TNF-mediated inhibition of [(3)H]NE release is transformed, such that [(3)H]NE release is potentiated in the presence of TNF, an effect that occurs in association with alpha(2)-adrenergic receptor activation. However, chronic zimelidine administration does not alter stimulation-evoked [(3)H]NE release, whereas chronic desipramine administration increases stimulation-evoked [(3)H]NE release and concomitantly decreases alpha(2)-adrenergic autoreceptor sensitivity. Collectively, these data support the hypothesis that chronic antidepressant drug administration alters alpha(2)-adrenergic receptor-dependent regulation of NE release. Additionally, these data demonstrate that administration of dissimilar antidepressant drugs similarly transform alpha(2)-adrenergic autoreceptors that are functionally associated with the neuromodulatory effects of TNF, suggesting a possible mechanism of action of antidepressant drugs.  (+info)

Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. (3/19)

A study was made of the effects of several monoamine-uptake inhibitors on membrane currents elicited by acetylcholine (ACh-currents) generated by rat neuronal alpha2beta4 and mouse muscle nicotinic acetylcholine receptors (AChRs) expressed in Xenopus laevis oocytes. For the two types of receptors the monoamine-uptake inhibitors reduced the ACh-currents albeit to different degrees. The order of inhibitory potency was norfluoxetine > clomipramine > indatraline > fluoxetine > imipramine > zimelidine > 6-nitro-quipazine > trazodone for neuronal alpha2beta4 AChRs, and norfluoxetine > fluoxetine > imipramine > clomipramine > indatraline > zimelidine > trazodone > 6-nitro-quipazine for muscle AChRs. Thus, the most potent inhibitor was norfluoxetine, whilst the weakest ones were trazodone, 6-nitro-quipazine and zimelidine. Effects of the tricyclic antidepressant imipramine were studied in more detail. Imipramine inhibited reversibly and non-competitively the ACh-current with a similar inhibiting potency for both neuronal alpha2beta4 and muscle AChRs. The half-inhibitory concentrations of imipramine were 3.65 +/- 0.30 microM for neuronal alpha2beta4 and 5.57 +/- 0.19 microM for muscle receptors. The corresponding Hill coefficients were 0.73 and 1.2 respectively. The inhibition of imipramine was slightly voltage-dependent, with electric distances of approximately 0.10 and approximately 0.12 for neuronal alpha2beta4 and muscle AChRs respectively. Moreover, imipramine accelerated the rate of decay of ACh- currents of both muscle and neuronal AChRs. The ACh-current inhibition was stronger when oocytes, expressing neuronal alpha2beta4 or muscle receptors, were preincubated with imipramine alone than when it was applied after the ACh-current had been generated, suggesting that imipramine acts also on non-activated or closed AChRs. We conclude that monoamine-uptake inhibitors reduce ACh-currents and that imipramine regulates reversibly and non- competitively neuronal alpha2beta4 and muscle AChRs through similar mechanisms, perhaps by interacting externally on a non-conducting state of the AChR and by blocking the open receptor-channel complex close to the vestibule of the channel. These studies may be important for understanding the regulation of AChRs as well as for understanding antidepressant- and side-effects of monoamine-uptake inhibitors.  (+info)

Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). (4/19)

1. The effects of fluoxetine, a commonly used antidepressant drug, on G protein-activated inwardly rectifying K(+) channels (GIRK, Kir3) were investigated using Xenopus oocyte expression assays. 2. In oocytes injected with mRNAs for GIRK1/GIRK2, GIRK2 or GIRK1/GIRK4 subunits, fluoxetine reversibly reduced inward currents through the basal GIRK activity. The inhibition by fluoxetine showed a concentration-dependence, a weak voltage-dependence and a slight time-dependence with a predominant effect on the instantaneous current elicited by voltage pulses and followed by slight further inhibition. Furthermore, in oocytes expressing GIRK1/2 channels and the cloned Xenopus A(1) adenosine receptor, GIRK current responses activated by the receptor were inhibited by fluoxetine. In contrast, ROMK1 and IRK1 channels in other Kir channel subfamilies were insensitive to fluoxetine. 3. The inhibitory effect on GIRK channels was not obtained by intracellularly applied fluoxetine, and not affected by extracellular pH, which changed the proportion of the uncharged to protonated fluoxetine, suggesting that fluoxetine inhibits GIRK channels from the extracellular side. 4. The GIRK currents induced by ethanol were also attenuated in the presence of fluoxetine. 5. We demonstrate that fluoxetine, at low micromolar concentrations, inhibits GIRK channels that play an important role in the inhibitory regulation of neuronal excitability in most brain regions and the heart rate through activation of various G-protein-coupled receptors. The present results suggest that inhibition of GIRK channels by fluoxetine may contribute to some of its therapeutic effects and adverse side effects, particularly seizures in overdose, observed in clinical practice.  (+info)

Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice; a putative test for anxiolytic agents. (5/19)

1. The effects of 5-hydroxytryptamine (5-HT) uptake inhibitors, agonists and antagonists have been evaluated on mouse marble-burying behaviour, a putative test for anxiolytic agents. The high levels of locomotor activity occurring on first exposure to a circular runway (runway were used as a separate test of non-specific drug effects. 2. Fluvoxamine, zimeldine, indalpine and citalopram dose-dependently inhibited burying without affecting runway activity. 5-Hydroxytryptophan (5-HTP, with carbidopa), 5-methoxy-N,N-dimethyltryptamine, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OHDPAT), buspirione, gepirone and ipsapirone reduced burying only at doses reducing runway activity. RU 24969 increased runway activity at all effective doses. 1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI), 1,-(3-trifluoromethylphenyl) piperazine (TFMPP) and 1-(3-chlorophenyl)-piperazine (mCPP) potently and differentially reduced burying at doses below those affecting runway activity. 3. 5-HT antagonists only reduced burying at high doses which also reduced runway activity. Burying inhibition by DOI was antagonized by ritanserin, ICI 169,369 and cyproheptadine but not by pindolol or a low (0.25 mg kg-1) dose of metergoline. Burying inhibition by mCPP was not altered by any of these agents except that it was potentiated by pindolol 5 mg kg-1. 4. Zimeldine burying inhibition was potentiated by ritanserine, ICI 169,369, ICS 205-930, cyproheptadine and pindolol. Runway activity was not affected by these drug combinations. 5. Zimeldine was administered in drinking water at a dose of 10 mg kg-1 daily for 21 days. Burying inhibition had disappeared by day 14 and did not recur 24 or 48h after withdrawal at which times responses to DOI were at control levels.6. Selective inhibition of marble burying was not found to be a property of 5-HT-related putative and actual anxiolytics such as buspirone, gepirone, ipsapirone, ritanserin and ondansetron. Nevertheless it was a general property of both 5-HT uptake inhibitors and 5-HT releasing agents; this generality suggests that elevated synaptic 5-HT could be responsible for the effects of these latter agents. The action of DOI may be attributable to effects at the 5-HT2 receptor but those of the 5-HT agonist and releasing agent mCPP, and the uptake inhibitor zimeldine, could not be attributed to effects at any one 5-HT receptor subtype. This, together with the potentiating effect of several 5-HT antagonists on the response to zimeldine, raises the possibility of multiple interactions between 5-HT receptor subtypes.  (+info)

Serotonin released from amacrine neurons is scavenged and degraded in bipolar neurons in the retina. (6/19)

 (+info)

Norepinephrine inhibition in juvenile male zebra finches modulates adult song quality. (7/19)

 (+info)

Effects of chronic oral administration of the antidepressants, desmethylimipramine and zimelidine on rat cortical GABAB binding sites: a comparison with 5-HT2 binding site changes. (8/19)

1. The effects of chronic oral administration of desmethylimipramine (DMI) or zimelidine (1.25 and 5 mg kg-1 twice daily for 21 days) were studied on rat whole cortical gamma-aminobutyric acidB (GABAB) binding sites. No changes in receptor affinity or number were found with either drug. 2. A subsequent study of GABAB binding sites using higher doses of these drugs (5 and 10 mg kg-1) and rat frontal cortex was also without effect, when investigated 24 h after termination of drug administration or 72 h after DMI administration (5 mg kg-1). 3. The number of frontal cortical 5-hydroxytryptamine2 (5-HT2) binding sites was significantly and dose-dependently decreased after both drugs, whereas the number of hippocampal 5-HT2 binding sites was not significantly altered after either drug. 4. As the number of frontal cortical GABAB binding sites was unaltered whereas the number of 5-HT2 binding sites was significantly decreased under identical study conditions, it may be concluded that the effects of antidepressant administration upon GABAB binding sites is a less consistent observation than their effects on 5-HT2 binding sites.  (+info)