Y-chromosome-specific microsatellite mutation rates re-examined using a minisatellite, MSY1. (57/1444)

Polymorphic Y-chromosome-specific microsatellites are becoming increasingly used in evolutionary and forensic studies and, in particular, in dating the origins of Y-chromosomal lineages. Previously, haplotyping of Y chromosomes from males belonging to a set of deep-rooting pedigrees was used to estimate a conservative average Y-chromosomal microsatellite mutation rate of 2.1 x 10(-3)per locus per generation. A number of males showed multiple differences in haplotypes compared with other males within their pedigrees, and these were excluded from the calculation of this estimate, on the grounds that non-paternity was a more probable explanation than multiple mutation within a lineage. Here we reanalyse the pedigrees using an independent highly polymorphic system, the Y-specific minisatellite, MSY1. This supports the hypothesis of non-paternity where more than one microsatellite difference was observed, provides further support for the previously deduced microsatellite mutation rate and throws light on the mutation dynamics of MSY1 itself, suggesting that single-step changes are not the only mode of mutation.  (+info)

Chromosome abnormalities in a referred population for suspected chromosomal aberrations: a report of 4117 cases. (58/1444)

A cytogenetic study was performed on 4,117 Korean patients referred for suspected chromosomal abnormalities. Chromosome aberrations were identified in 17.5% of the referred cases. The most common autosomal abnormality was Down syndrome and Turner syndrome in abnormalities of sex chromosome. The proportions of different karyotypes in Down syndrome (trisomy 21 92.5%, translocation 5.1%, mosaic 2.4%) were similar to those reported in other countries. However, it was different in Turner syndrome (45, X 28.1%, mosaic 50.8%, 46, X, del (Xq) 4.4%, 46, X, i (Xq) 16.7%), in which proportions of mosaics and isochromosome, 46, X, i(Xq), were higher than those reported in other countries. In structural chromosome aberrations of autosome, translocation was the most common (43.6%), and duplication (21.3%), deletion (14.4%), marker chromosome (7.9%) and ring chromosome (4.0%) followed in order of frequency. Rates of several normal variant karyotypes were also described. Inversion of chromosome 9 was observed in 1.7% of total referred cases.  (+info)

Role of multicolor fluorescence in situ hybridization (FISH) in simultaneous detection of probe sets for chromosome 18, X and Y in uncultured amniotic fluid cells. (59/1444)

Major aneuploidies diagnosed prenatally involve the autosomes 13, 18, and 21, and sex chromosomes. Fluorescence in situ hybridization (FISH) allows rapid analysis of chromosome copy number in interphase cells. The purpose of this study was to evaluate the role of multicolor fluorescence in situ hybridization in simultaneous detection of probe sets for chromosome 18, X, and Y in uncultured amniotic fluid cells as a safer alternative method for aneuploidy detection prenatally. Fifty amniotic fluid samples were analyzed by FISH and standard cytogenetics. Mean time to obtain results was three days for fluorescence in situ hybridization and 20 days for karyotype. Fluorescence in situ hybridization was informative in 43 samples (86%), and within this group, two aneuploidies were correctly identified. This evaluation demonstrates that FISH with X, Y, and 18 alpha satellite DNA probes could accurately and rapidly detect aneuploidies involving these chromosomes and could be used in any prenatal clinical laboratory.  (+info)

DNA copy number losses in human neoplasms. (60/1444)

This review summarizes reports of recurrent DNA sequence copy number losses in human neoplasms detected by comparative genomic hybridization. Recurrent losses that affect each of the chromosome arms in 73 tumor types are tabulated from 169 reports. The tables are available online at http://www.amjpathol.org and http://www. helsinki.fi/ approximately lglvwww/CMG.html. The genes relevant to the lost regions are discussed for each of the chromosomes. The review is supplemented also by a list of known and putative tumor suppressor genes and DNA repair genes (see Table 1, online). Losses are found in all chromosome arms, but they seem to be relatively rare at 1q, 2p, 3q, 5p, 6p, 7p, 7q, 8q, 12p, and 20q. Losses and their minimal common overlapping areas that were present in a great proportion of the 73 tumor entities reported in Table 2 (see online) are (in descending order of frequency): 9p23-p24 (48%), 13q21 (47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%), 18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%), 11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-q23 (25%), 10q23 (25%), 10q25-qter (25%),15q21 (23%), 16q22 (23%), 5q21 (23%), 3p12-p14 (22%), 22q12 (22%), Xp21 (21%), Xq21 (21%), and 10p12 (20%). The frequency of losses at chromosomes 7 and 20 was less than 10% in all tumors. The chromosomal regions in which the most frequent losses are found implicate locations of essential tumor suppressor genes and DNA repair genes that may be involved in the pathogenesis of several tumor types.  (+info)

Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female. (61/1444)

The description of Frasier syndrome until now has been restricted to XY females with gonadal dysgenesis, progressive glomerulopathy, and a significant risk of gonadoblastoma. Mutations in the donor splice site in intron 9 of the Wilms' tumor (WT1) gene have been shown to cause Frasier syndrome and are distinct from WT1 exon mutations associated with Denys-Drash syndrome. The WT1 gene, which is essential for normal kidney and gonadal development, encodes a zinc finger transcription factor. The intron 9 alternative splice donor site mutation seen in Frasier syndrome leads to loss of three amino acids (+KTS isoform), thus disrupting the normal ratio of the +KTS/-KTS isoforms critical for proper gonadal and renal development. This study examines two sisters with identical intron 9 mutations. The proband carries a classic diagnosis of Frasier syndrome with 46,XY gonadal dysgenesis, whereas her sister has progressive glomerulopathy but a 46,XX karyotype and normal female development. This indicates that the proper WT1 isoform ratio is critical for renal and testicular development, but apparently does not affect either ovarian development or function. It is proposed that the clinical definition of Frasier syndrome should be broadened to include 46,XX females with normal genital development and focal segmental glomerulosclerosis associated with a WT1 intron 9 donor splice site mutation. Nephrologists need to consider the possibility of this heritable syndrome in evaluation of females with focal segmental glomerulosclerosis and to consider their risk for gonadal malignancy, as well as the risk for kidney disease, gonadal dysgenesis, and malignancy in their offspring.  (+info)

The critical region of overlap defining the AZFa male infertility interval of proximal Yq contains three transcribed sequences. (62/1444)

The position of deletion breakpoints in a series of four AZFa male infertility patients has been refined using new markers derived from BAC clone DNA sequence covering the AZFa male infertility interval. The proximal half of the AZFa interval is occupied by pseudogene sequences with homology to Xp22. The distal half contains an anonymous expressed sequence tag (named AZFaT1) found transcribed in brain, testis, and skeletal muscle and the DFFRY and DBY genes. All the patients have AZFaT1 and DFFRY deleted in their entirety and three patients additionally have DBY deleted. The three patients with AZFaT1, DFFRY, and DBY deleted show a severe Sertoli cell only syndrome type I phenotype, whereas the patient that has retained DBY shows a milder oligozoospermic phenotype. The expression of DBY in a cell line from this latter patient is unaltered; this shows that it is the loss of genes lying within the deletion that is responsible for the observed oligozoospermia. RT-PCR analysis of mouse testis RNA from normal and XXSxr(a) mice (devoid of germ cells) has shown that Dby is expressed primarily in somatic cells and that the level of expression is unaltered during germ cell differentiation. This contrasts with Dffry where no transcripts are detectable in XXSxr(a) mouse testis and expression occurs specifically in testis mRNA in a germ cell dependent fashion.  (+info)

Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: urinary DNA chimerism. (63/1444)

BACKGROUND: Previous studies have indicated that microchimerism is present in body tissues, peripheral blood, and plasma of recipients after organ transplantation. We hypothesize that donor-derived DNA may also be present in cell-free urine of renal transplant recipients and that the concentrations of urine DNA may be correlated with graft rejection. METHODS: Thirty-one female patients who had renal transplantation were enrolled in the study. In women with male organ donors, the SRY gene on the Y chromosome was used as a marker for donor-derived DNA. Real-time quantitative PCR for the SRY and beta-globin genes was carried out on cell-free urinary DNA from these patients. Serial urine samples from a female renal transplant recipient undergoing an acute rejection episode were also collected and analyzed with the beta-globin quantitative PCR system. RESULTS: SRY sequences were detected in the urine of 14 of 17 female patients with male organ donors. None of the 14 patients with female organ donors had detectable SRY sequences in urinary DNA. The median fractional concentration of donor-derived DNA was 8.7% (interquartile range, 1.9-26.4%). During the acute rejection episode, urinary concentrations of the beta-globin gene were markedly increased, with the concentrations returning rapidly to normal following antirejection treatment. CONCLUSIONS: Our results demonstrate that urinary DNA chimerism is present following renal transplantation. The measurement of urinary DNA using quantitative PCR may be useful for the diagnosis and monitoring of graft rejection.  (+info)

Increased fetal DNA concentrations in the plasma of pregnant women carrying fetuses with trisomy 21. (64/1444)

BACKGROUND: The recent discovery of the presence of circulating cell-free fetal DNA in maternal plasma opens up new prenatal diagnostic applications and provides new avenues for clinical investigation. It is of research and potential diagnostic interest to determine whether fetal trisomy 21 may be associated with quantitative abnormalities of circulating fetal DNA in maternal plasma. METHODS: Maternal plasma samples were prospectively collected from two centers situated in Hong Kong and Boston. Samples collected from Boston consisted of 7 women carrying male trisomy 21 fetuses, 19 carrying euploid male fetuses, and 13 carrying female fetuses. Samples collected from Hong Kong consisted of 6 women carrying male trisomy 21 fetuses, 18 carrying euploid male fetuses, and 10 carrying female fetuses. Male fetal DNA in maternal plasma was measured using real-time quantitative Y-chromosomal PCR. RESULTS: For patients recruited from Boston, the median circulating fetal DNA concentrations in women carrying trisomy 21 and euploid male fetuses were 46.0 genome-equivalents/mL and 23.3 genome-equivalents/mL, respectively (P = 0.028). For patients recruited from Hong Kong, the median circulating fetal DNA concentrations in women carrying trisomy 21 and euploid male fetuses were 48.2 genome-equivalents/mL and 16.3 genome-equivalents/mL, respectively (P = 0.026). None of the samples from women carrying female fetuses had detectable Y-chromosomal signals. CONCLUSIONS: Abnormally high concentrations of circulating fetal DNA are found in a proportion of women carrying fetuses with trisomy 21. The robustness and reproducibility of real-time PCR analysis of maternal plasma makes it a valuable tool for cross-institutional collaboration involving centers located in different parts of the world.  (+info)