Prenatal confirmation of the translocation between chromosome 15 and Y-chromosome by fluorescence in situ hybridization. (49/1444)

A 30-year-old woman and her husband visited our hospital with habitual abortion as the complaint. Chromosome examination revealed a normal 46, XX for her and 46, XY, 15, der (15) t (Y; 15) (q12; p12) for him. After her pregnancy amniocentesis was performed. The karyotype was 46, XX, 15, der (15) t (Y; 15) (q12; p12) pat. ish der (15) (DYZ1+). A female baby was delivered. The growth of the baby was normal at 12 months of age.  (+info)

Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. (50/1444)

Transplantation offers a means of identifying the differentiation and myelination potential of early neural precursors, features relevant to myelin regeneration in demyelinating diseases. In the postnatal rat brain, precursor cells expressing the polysialylated (PSA) form of the neural cell adhesion molecule NCAM have been shown to generate mostly oligodendrocytes and astrocytes in vitro (Ben-Hur et al., 1998). Immunoselected PSA-NCAM+ newborn rat CNS precursors were expanded as clusters with FGF2 and grafted into a focal demyelinating lesion in adult rat spinal cord. We show that these neural precursors can completely remyelinate such CNS lesions. While PSA-NCAM+ precursor clusters contain rare P75+ putative neural crest precursors, they do not generate Schwann cells in vitro even in the presence of glial growth factor. Yet they generate oligodendrocytes, astrocytes, and Schwann cells in vivo when confronted with demyelinated axons in a glia-free area. We confirmed the transplant origin of these Schwann cells using Y chromosome in situ hybridization and immunostaining for the peripheral myelin protein P0 of tissue from female rats that had been grafted with male cell clusters. The number and distribution of Schwann cells within remyelinated tissue, and the absence of P0 mRNAs in donor cells, indicated that Schwann cells were generated by expansion and differentiation of transplanted PSA-NCAM+ neural precursors and were not derived from contaminating Schwann cells. Thus, transplantation into demyelinated CNS tissue reveals an unexpected differentiation potential of a neural precursor, resulting in remyelination of CNS axons by PNS and CNS myelin-forming cells.  (+info)

Transmission of a Y chromosomal deletion involving the deleted in azoospermia (DAZ) and chromodomain (CDY1) genes from father to son through intracytoplasmic sperm injection: case report. (51/1444)

The transmission of a deleted in azoospermia (DAZ) deletion from a severely oligozoospermic patient to his son following intracytoplasmic sperm injection (ICSI) treatment is reported. The case report highlights the fertilizing capacity of spermatozoa carrying Y chromosome deletions in patients treated with ICSI and stresses the importance of genetic counselling in severe male infertility.  (+info)

Reduced sequence variability on the Neo-Y chromosome of Drosophila americana americana. (52/1444)

Sex chromosomes are generally morphologically and functionally distinct, but the evolutionary forces that cause this differentiation are poorly understood. Drosophila americana americana was used in this study to examine one aspect of sex chromosome evolution, the degeneration of nonrecombining Y chromosomes. The primary X chromosome of D. a. americana is fused with a chromosomal element that was ancestrally an autosome, causing this homologous chromosomal pair to segregate with the sex chromosomes. Sequence variation at the Alcohol Dehydrogenase (Adh) gene was used to determine the pattern of nucleotide variation on the neo-sex chromosomes in natural populations. Sequences of Adh were obtained for neo-X and neo-Y chromosomes of D. a. americana, and for Adh of D. a. texana, in which it is autosomal. No significant sequence differentiation is present between the neo-X and neo-Y chromosomes of D. a. americana or the autosomes of D. a. texana. There is a significantly lower level of sequence diversity on the neo-Y chromosome relative to the neo-X in D. a. americana. This reduction in variability on the neo-Y does not appear to have resulted from a selective sweep. Coalescent simulations of the evolutionary transition of an autosome into a Y chromosome indicate there may be a low level of recombination between the neo-X and neo-Y alleles of Adh and that the effective population size of this chromosome may have been reduced below the expected value of 25% of the autosomal effective size, possibly because of the effects of background selection or sexual selection.  (+info)

Migration of mesonephric cells into the mammalian gonad depends on Sry. (53/1444)

In mammals, the primary step in male sex determination is the initiation of testis development which depends on the expression of the Y-linked testis determining gene, Sry. The mechanisms by which Sry controls this process are unknown. Studies showed that cell migration from the adjacent mesonephros only occurs into XY gonads; however, it was not known whether this effect depended on Sry, another Y-linked gene, or the presence of one versus two X chromosomes. Here we provide genetic proof that Sry is the only Y-linked gene necessary for cell migration into the gonad. Cell migration from the mesonephros into the differentiating gonad is consistently associated with Sty's presence and with testis cord formation, suggesting that cell migration plays a critical role in the initiation of testis cord development. The induction of cell migration represents the earliest signaling pathway yet assigned to Sry.  (+info)

Y-chromosomal DNA haplotype differences in control and infertile Italian subpopulations. (54/1444)

Y-chromosomal DNA haplotypes were determined in 74 infertile and 216 control Italian males using eight biallelic markers. A significant difference in haplotype frequency was found, but could be explained by the geographical origins of the samples. The Y chromosome is thus a sensitive marker for population substructuring and may be useful for determining whether two population samples come from a single population, for example in association studies.  (+info)

The Old World monkey DAZ (Deleted in AZoospermia) gene yields insights into the evolution of the DAZ gene cluster on the human Y chromosome. (55/1444)

The DAZ gene cluster on the human Y chromosome is a candidate for the Azoospermia Factor (AZFc). According to the current evolutionary model, the DAZ cluster derived from the autosomal homolog DAZL1 through duplications and rearrangements and is confined to Old World monkeys, apes and humans. To study functional and evolutionary aspects of this gene family we have isolated from a cynomolgus (Old World) monkey testis cDNA library the Y chromosomal cynDAZ and the autosomal cynDAZL1 cDNA. cynDAZL1 contains one DAZ repeat and displays high homology to human DAZL1. cynDAZ comprises 11 repeats, each consisting of exons 7 and 8, whereas the human DAZ cDNA repeat units contain predominantly exon 7. Genomic studies revealed the same amplific- ation events of a 2.4 kb genomic unit encompassing exons 7 and 8 in both species, indicating that after splitting of the two lineages, in the human mainly exon 8 was converted to a pseudoexon by splice site mutations. The structural features of cynDAZ reveal a more detailed model for the sequence of events leading to the present form of human DAZ. Thus, in a monkey species DAZ is present in a form more ancestral than that of the human. Studies on the immunolocalization of cynDAZ / DAZL1 in cynomolgus monkey testis revealed a biphasic expression pattern with proteins being detectable in A-pale to B-spermatogonia, late spermatocytes and spermatids, but not in early spermatocytes and late spermatids. In contrast, in the marmoset monkey, an animal lacking DAZ, DAZL1 protein was only expressed in late spermatocytes and early spermatids. These findings point to an additional function of cynDAZ / cynDAZL1 during spermato- genesis in the Old World monkey not needed in the New World monkey.  (+info)

Transposition of SRY into the ancestral pseudoautosomal region creates a new pseudoautosomal boundary in a progenitor of simian primates. (56/1444)

We have isolated the prosimian lemur homologues for STS and SRY. FISH unambiguously co-localized STS with SHOX, IL3RA, ANT3 and PRK into the meiotic X-Y pairing region (PAR) of lemurs. In contrast to the close proximity of SRY to the pseudoautosomal boundary (PAB) on the Y chromosome in simian primates, SRY maps distant from the PAR in lemurs. Most interestingly, we were able to determine a DNA sequence divergence of 12.5% between the human and lemur SRY HMG box. This divergence directs to a 52 million year period of separate evolution of human and lemur SRY genes. Phylogenetically, this time period falls in between the times that prosimians and New World monkeys branched from the human lineage. Thus, we conclude that approximately 52 million years ago a transposition of SRY into the ancestral eutherian PAR distal to STS and PRK defined a new PAB in a simian progenitor. By this event, STS and PRK, amongst other genes, were excluded from the X-Y crossover process and thus became susceptible to rearrangements and/or deterioration on the Y chromosome in simian primates.  (+info)