(1/11334) Bcl-2 regulates amplification of caspase activation by cytochrome c.

Caspases, a family of specific proteases, have central roles in apoptosis [1]. Caspase activation in response to diverse apoptotic stimuli involves the relocalisation of cytochrome c from mitochondria to the cytoplasm where it stimulates the proteolytic processing of caspase precursors. Cytochrome c release is controlled by members of the Bcl-2 family of apoptosis regulators [2] [3]. The anti-apoptotic members Bcl-2 and Bcl-xL may also control caspase activation independently of cytochrome c relocalisation or may inhibit a positive feedback mechanism [4] [5] [6] [7]. Here, we investigate the role of Bcl-2 family proteins in the regulation of caspase activation using a model cell-free system. We found that Bcl-2 and Bcl-xL set a threshold in the amount of cytochrome c required to activate caspases, even in soluble extracts lacking mitochondria. Addition of dATP (which stimulates the procaspase-processing factor Apaf-1 [8] [9]) overcame inhibition of caspase activation by Bcl-2, but did not prevent the control of cytochrome c release from mitochondria by Bcl-2. Cytochrome c release was accelerated by active caspase-3 and this positive feedback was negatively regulated by Bcl-2. These results provide evidence for a mechanism to amplify caspase activation that is suppressed at several distinct steps by Bcl-2, even after cytochrome c is released from mitochondria.  (+info)

(2/11334) Angiotensin II type 1 receptor-mediated inhibition of K+ channel subunit kv2.2 in brain stem and hypothalamic neurons.

Angiotensin II (Ang II) has powerful modulatory actions on cardiovascular function that are mediated by specific receptors located on neurons within the hypothalamus and brain stem. Incubation of neuronal cocultures of rat hypothalamus and brain stem with Ang II elicits an Ang II type 1 (AT1) receptor-mediated inhibition of total outward K+ current that contributes to an increase in neuronal firing rate. However, the exact K+ conductance(s) that is inhibited by Ang II are not established. Pharmacological manipulation of total neuronal outward K+ current revealed a component of K+ current sensitive to quinine, tetraethylammonium, and 4-aminopyridine, with IC50 values of 21.7 micromol/L, 1.49 mmol/L, and 890 micromol/L, respectively, and insensitive to alpha-dendrotoxin (100 to 500 nmol/L), charybdotoxin (100 to 500 nmol/L), and mast cell degranulating peptide (1 micromol/L). Collectively, these data suggest the presence of Kv2.2 and Kv3.1b. Biophysical examination of the quinine-sensitive neuronal K+ current demonstrated a macroscopic conductance with similar biophysical properties to those of Kv2.2 and Kv3.1b. Ang II (100 nmol/L), in the presence of the AT2 receptor blocker PD123,319, elicited an inhibition of neuronal K+ current that was abolished by quinine (50 micromol/L). Reverse transcriptase-polymerase chain reaction analysis confirmed the presence of Kv2.2 and Kv3.1b mRNA in these neurons. However, Western blot analyses demonstrated that only Kv2.2 protein was present. Coexpression of Kv2.2 and the AT1 receptor in Xenopus oocytes demonstrated an Ang II-induced inhibition of Kv2.2 current. Therefore, these data suggest that inhibition of Kv2.2 contributes to the AT1 receptor-mediated reduction of neuronal K+ current and subsequently to the modulation of cardiovascular function.  (+info)

(3/11334) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation.

Disulfide trapping studies have revealed that the pore-lining (P) segments of voltage-dependent sodium channels undergo sizable motions on a subsecond time scale. Such motions of the pore may be necessary for selective ion translocation. Although traditionally viewed as separable properties, gating and permeation are now known to interact extensively in various classes of channels. We have investigated the interaction of pore motions and voltage-dependent gating in micro1 sodium channels engineered to contain two cysteines within the P segments. Rates of catalyzed internal disulfide formation (kSS) were measured in K1237C+W1531C mutant channels expressed in oocytes. During repetitive voltage-clamp depolarizations, increasing the pulse duration had biphasic effects on the kSS, which first increased to a maximum at 200 msec and then decreased with longer depolarizations. This result suggested that occupancy of an intermediate inactivation state (IM) facilitates pore motions. Consistent with the known antagonism between alkali metals and a component of slow inactivation, kSS varied inversely with external [Na+]o. We examined the converse relationship, namely the effect of pore flexibility on gating, by measuring recovery from inactivation in Y401C+E758C (YC/EC) channels. Under oxidative conditions, recovery from inactivation was slower than in a reduced environment in which the spontaneous YC/EC cross-link is disrupted. The most prominent effects were slowing of a component with intermediate recovery kinetics, with diminution of its relative amplitude. We conclude that occupancy of an intermediate inactivation state facilitates motions of the P segments; conversely, flexibility of the P segments alters an intermediate component of inactivation.  (+info)

(4/11334) Histone octamer transfer by a chromatin-remodeling complex.

RSC, an abundant, essential chromatin-remodeling complex related to SWI/SNF complex, catalyzes the transfer of a histone octamer from a nucleosome core particle to naked DNA. The newly formed octamer-DNA complex is identical with a nucleosome in all respects. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. The mechanism may entail formation of a duplex displacement loop on the nucleosome, facilitating the entry of exogeneous DNA and the release of the endogenous molecule.  (+info)

(5/11334) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness.

Potassium channels regulate electrical signaling and the ionic composition of biological fluids. Mutations in the three known genes of the KCNQ branch of the K+ channel gene family underlie inherited cardiac arrhythmias (in some cases associated with deafness) and neonatal epilepsy. We have now cloned KCNQ4, a novel member of this branch. It maps to the DFNA2 locus for a form of nonsyndromic dominant deafness. In the cochlea, it is expressed in sensory outer hair cells. A mutation in this gene in a DFNA2 pedigree changes a residue in the KCNQ4 pore region. It abolishes the potassium currents of wild-type KCNQ4 on which it exerts a strong dominant-negative effect. Whereas mutations in KCNQ1 cause deafness by affecting endolymph secretion, the mechanism leading to KCNQ4-related hearing loss is intrinsic to outer hair cells.  (+info)

(6/11334) Phosphorylation of yeast TBP by protein kinase CK2 reduces its specific binding to DNA.

Protein kinase CK2 is a ubiquitous Ser/Thr kinase which phosphorylates a large number of proteins including several transcription factors. Recombinant Xenopus laevis CK2 phosphorylates both recombinant Saccharomyces cerevisiae and Schizosaccharomyces pombe TATA binding protein (TBP). The phosphorylation of TBP by CK2 reduces its binding activity to the TATA box. CK2 copurifies with the transcription factor IID (TFIID) complex from HeLa cell extracts and phosphorylates several of the TBP-associated factors within TFIID. Taken together these findings argue for a role of CK2 in the control of transcription by RNA polymerase II through the modulation of the binding activity of TBP to the TATA box.  (+info)

(7/11334) In vivo formation of Cu,Zn superoxide dismutase disulfide bond in Escherichia coli.

We have found that the in vivo folding of periplasmic Escherichia coli Cu,Zn superoxide dismutase is assisted by DsbA, which catalyzes the efficient formation of its single disulfide bond, whose integrity is essential to ensure full catalytic activity to the enzyme. In line with these findings, we also report that the production of recombinant Xenopus laevis Cu,Zn superoxide dismutase is enhanced when the enzyme is exported in the periplasmic space or is expressed in thioredoxin reductase mutant strains. Our data show that inefficient disulfide bond oxidation in the bacterial cytoplasm inhibits Cu,Zn superoxide dismutase folding in this cellular compartment.  (+info)

(8/11334) Cu(II) inhibition of the proton translocation machinery of the influenza A virus M2 protein.

The homotetrameric M2 integral membrane protein of influenza virus forms a proton-selective ion channel. An essential histidine residue (His-37) in the M2 transmembrane domain is believed to play an important role in the conduction mechanism of this channel. Also, this residue is believed to form hydrogen-bonded interactions with the ammonium group of the anti-viral compound, amantadine. A molecular model of this channel suggests that the imidazole side chains of His-37 from symmetry-related monomers of the homotetrameric pore converge to form a coordination site for transition metals. Thus, membrane currents of oocytes of Xenopus laevis expressing the M2 protein were recorded when the solution bathing the oocytes contained various transition metals. Membrane currents were strongly and reversibly inhibited by Cu2+ with biphasic reaction kinetics. The biphasic inhibition curves may be explained by a two-site model involving a fast-binding peripheral site with low specificity for divalent metal ions, as well as a high affinity site (Kdiss approximately 2 microM) that lies deep within the pore and shows rather slow-binding kinetics (kon = 18.6 +/- 0.9 M-1 s-1). The pH dependence of the interaction with the high affinity Cu2+-binding site parallels the pH dependence of inhibition by amantadine, which has previously been ascribed to protonation of His-37. The voltage dependence of the inhibition at the high affinity site indicates that the binding site lies within the transmembrane region of the pore. Furthermore, the inhibition by Cu2+ could be prevented by prior application of the reversible blocker of M2 channel activity, BL-1743, providing further support for the location of the site within the pore region of M2. Finally, substitutions of His-37 by alanine or glycine eliminated the high affinity site and resulted in membrane currents that were only partially inhibited at millimolar concentrations of Cu2+. Binding of Cu2+ to the high affinity site resulted in an approximately equal inhibition of both inward and outward currents. The wild-type protein showed very high specificity for Cu2+ and was only partially inhibited by 1 mM Ni2+, Pt2+, and Zn2+. These data are discussed in terms of the functional role of His-37 in the mechanism of proton translocation through the channel.  (+info)