Using computerized video time lapse for quantifying cell death of X-irradiated rat embryo cells transfected with c-myc or c-Ha-ras. (1/2073)

Rat embryo fibroblasts that had been transfected with the c-myc or c-Ha-ras oncogene were X-irradiated, after which individual cells and their progeny were followed in multiple fields for 5-6 days by computerized video time lapse microscopy to quantify the lethal events that resulted in loss of clonogenic survival. The loss of clonogenic survival of X-irradiated (9.5 or 2.5 Gy) REC:myc cells was attributed almost entirely to the cells dying by apoptosis, with almost all of the apoptosis occurring after the progeny had divided from one to four times. In contrast, the loss of clonogenic survival of X-irradiated REC:ras cells was attributed to two processes. After 9.5 Gy, approximately approximately 60% of the nonclonogenic cells died by apoptosis (with a very small amount of necrosis), and the other 40% underwent a senescent-type process in which some of the cells and their progeny stopped dividing but remained as viable cells throughout 140 h of observation. Both processes usually occurred after the cells had divided and continued to occur in the cells' progeny for up to five divisions after irradiation. Furthermore, the duration of the apoptotic process was shorter for REC:myc cells (0.5-1 h) than for REC:ras cells (4-5 h). By using computerized video time lapse to follow individual cells, we were able to determine the mode of cell death. This cannot be determined by conventional clonogenic survival experiments. Also, only by following the individual cells and their progeny can the true amount of apoptosis be determined. The cumulative percentage of apoptosis scored in whole populations, without distinguishing between the progeny of individually irradiated cells, does not reflect the true amount of apoptosis that occurs in cells that undergo postmitotic apoptosis after irradiation. Scoring cell death in whole populations of cells gives erroneous results because both clonogenic and nonclonogenic cells are dividing as nonclonogenic cells are apoptosing or senescing over a period of many days. For example, after 9.5 Gy, which causes reproductive cell death in 99% of both types of cells, the cumulative percentage of the cells scored as dead in the whole population at 60- 80 h after irradiation, when the maximum amount of cumulative apoptosis occurred, was approximately 60% for REC:myc cells, compared with only approximately 40% for REC:ras cells.  (+info)

Possible carcinogenic effects of X-rays in a transgenerational study with CBA mice. (2/2073)

A lifetime experiment using 4279 CBA/J mice was carried out to investigate whether the pre-conceptual exposure of sperm cells to X-ray radiation or urethane would result in an increased cancer risk in the untreated progeny, and/or increased susceptibility to cancer following exposure to a promoting agent. The study consisted of four main groups, namely a control group (saline), a urethane group (1 mg/g body wt) and two X-ray radiation groups (1 Gy, 2 Gy). At 1, 3 and 9 weeks after treatment, the males of these four parental groups were mated with untreated virgin females. The offspring of each parental group was divided into two subgroups: one received s.c. urethane (0.1 mg/g body wt once) as a promoter, the other saline, at the age of 6 weeks. All animals were evaluated for the occurrence of tumours. K-ras oncogene and p53 tumour suppressor gene mutations were investigated in frozen lung tumour samples. The female offspring of male parents exposed to X-rays 1 week before their mating showed a trend towards a higher tumour incidence of the haematopoietic system than the F1 controls. In addition, a higher percentage of bronchioloalveolar adenocarcinomas in male offspring born to irradiated paternals mated 1 week after X-ray treatment points to a plausible increased sensitivity of post-meiotic germ cell stages towards transgenerational carcinogenic effects. On the other hand, no increased tumour incidence and malignancy were observed in the offspring born to irradiated paternals mated 3 and 9 weeks after X-ray treatment. Paternal urethane treatment 1, 3 and 9 weeks prior to conception did not result in significantly altered incidence or malignancy of tumours of the lung, liver and haematopoietic tissue in the offspring. K-ras mutations increased during tumour progression from bronchioloalveolar hyperplasia to adenoma. Codon 61 K-ras mutations were more frequent in lung tumours of urethane-promoted progeny from irradiated parents than from control parents. P53 mutations were absent from these lung alterations.  (+info)

Loss of normal G1 checkpoint control is an early step in carcinogenesis, independent of p53 status. (3/2073)

Recent studies have described a diminished radiation-induced G1 arrest in some wild-type (wt) p53 human tumor cell lines compared to normal human fibroblasts. However, the significance of this finding was unclear, particularly because tumor cell lines may have accumulated additional genetic changes after long periods in culture. Because malignant transformation of individual cells is thought to be an early step in carcinogenesis, we have used a model system of normal and transformed mouse fibroblast 10T1/2 cell clones to examine whether loss of G1 checkpoint control may be an early event in tumor development and to study the relationships between G1 arrest, radiosensitivity, and genetic alterations. Twelve transformed clones were established from type III foci induced by irradiation of normal 10T1/2 cells and were compared with six clones derived from wt 10T1/2 cells. Three of the transformed clones expressed mutant p53; two of these had the same point mutation at codon 132 (exon 5), and one had a point mutation at codon 135. The remaining transformed and normal clones had wt p53 status. The radiosensitivity of transformed clones, as measured by a clonogenic assay, was similar to that of normal clones; the three clones with mutant p53 did not differ from the others. There was no relationship between G1 arrest and radiosensitivity. Normal 10T1/2 cell clones showed a transient G1 arrest lasting approximately 9 h after 6 Gy of irradiation. This G1 arrest was either absent or markedly reduced in all of the transformed clones, regardless of p53 status. These results suggest that diminished G1 checkpoint control is an early event in the process of carcinogenesis that is associated with the malignant transformation of individual cells and is independent of p53 status.  (+info)

Automated MAD and MIR structure solution. (4/2073)

Obtaining an electron-density map from X-ray diffraction data can be difficult and time-consuming even after the data have been collected, largely because MIR and MAD structure determinations currently require many subjective evaluations of the qualities of trial heavy-atom partial structures before a correct heavy-atom solution is obtained. A set of criteria for evaluating the quality of heavy-atom partial solutions in macromolecular crystallography have been developed. These have allowed the conversion of the crystal structure-solution process into an optimization problem and have allowed its automation. The SOLVE software has been used to solve MAD data sets with as many as 52 selenium sites in the asymmetric unit. The automated structure-solution process developed is a major step towards the fully automated structure-determination, model-building and refinement procedure which is needed for genomic scale structure determinations.  (+info)

The effects of static magnetic fields and X-rays on instability of microsatellite repetitive sequences. (5/2073)

To determine the genetic effect of static magnetic fields (SMF), which are not supposed to produce any significant DNA damage, we took advantage of DNA mismatch repair (MMR) deficient cells, in which all the errors produced during DNA replication are left uncorrected. We first established a simple and less labor-intensive method to analyze genetic changes in microsatellite repetitive sequences in the MMR-deficient cells. After exposure to a strong SMF (6.34T) for 24 h, both MMR deficient HCT116 cells and proficient HeLa S3 cells did not exhibit any significant effect on microsatellite changes. Moreover, when HCT116 cells were synchronized at the G1/S boundary by aphidicolin and exposed to SMF during the whole S-phase, no increase in microsatellite changes was either observed. In contrast, irradiation by a low dose X-ray (2Gy) significantly increased microsatellite changes in HCT116 cells. This suggested that exposure to strong SMF may not induce any significant level of genetic changes in microsatellite sequences.  (+info)

The role of the tumor suppressor p53 in spermatogenesis. (6/2073)

The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in spermatogonia, suggesting that, in contrast to other reports, p53 does have a role in spermatogonia. To determine the possible role of p53 in spermatogonia, histological analysis was performed in testes of both p53 knock out C57BL/6 and FvB mice. The results indicate that p53 is an important factor in normal spermatogonial cell production as well as in the regulation of apoptosis after DNA damage. First, p53 knock out mouse testes contained about 50% higher numbers of A1 spermatogonia, indicating that the production of differentiating type spermatogonia by the undifferentiated spermatogonia is enhanced in these mice. Second, 10 days after a dose of 5 Gy of X-rays, in the p53 knock out testes, increased numbers of giant sized spermatogonial stem cells were found, indicating disturbance of the apoptotic process in these cells. Third, in the p53 knock out testis, the differentiating A2-B spermatogonia are more radioresistant compared to their wild-type controls, indicating that p53 is partly indispensable in the removal of lethally irradiated differentiating type spermatogonia. In accordance with our immunohistochemical data, Western analysis showed that levels of p53 are increased in total adult testis lysates after irradiation. These data show that p53 is important in the regulation of cell production during normal spermatogenesis either by regulation of cell proliferation or, more likely, by regulating the apoptotic process in spermatogonia. Furthermore, after irradiation, p53 is important in the removal of lethally damaged spermatogonia.  (+info)

Afferent-target cell interactions in the cerebellum: negative effect of granule cells on Purkinje cell development in lurcher mice. (7/2073)

Lurcher (Lc) is a gain-of-function mutation in the delta2 glutamate receptor gene that results in a large, constitutive inward current in the cerebellar Purkinje cells of +/Lc mice. +/Lc Purkinje cells fail to differentiate fully and die during postnatal development. In normal mice, interactions with granule cells promote Purkinje cell dendritic differentiation. Partial destruction of the granule cell population in young +/Lc mice by x irradiation resulted in a significant increase in Purkinje cell dendritic growth and improved cytoplasmic structure but did not prevent Purkinje cell death. These results indicate two components to Purkinje cell abnormalities in +/Lc mice: a retardation/blockade of dendritic development that is mediated by interactions with granule cells and the death of the cell. Thus, the normal trophic effects of granule cell interaction on Purkinje cell development are absent in the +/Lc cerebellum, suggesting that granule cells are powerful regulators of Purkinje cell differentiation.  (+info)

Iron in the basal ganglia in Parkinson's disease. An in vitro study using extended X-ray absorption fine structure and cryo-electron microscopy. (8/2073)

Iron is found in high concentration in some areas of the brain, and increased iron in the substantia nigra is a feature of Parkinson's disease. The purpose of this study was to investigate the physical environment of brain iron in post-mortem tissue to provide information on the possible role of iron in neurodegeneration in Parkinson's disease. Iron has also been implicated as the cause of signal loss in areas of high brain iron on T2-weighted MRI sequences. Knowledge of the physical environment of the brain iron is essential in interpreting the cause of signal change. Post-mortem tissue was obtained from six cases of Parkinson's disease and from six age-matched controls. Iron levels were measured using absorption spectrophotometry. Extended X-ray absorption fine structure was used to evaluate the atomic environment of iron within the substantia nigra and both segments of the globus pallidus. Cryo-electron transmission microscopy was used to probe the iron storage proteins in these areas. Iron levels were increased in the parkinsonian nigra and lateral portion of the globus pallidus. Spectra from the extended X-ray absorption fine structure experiments showed that ferritin was the only storage protein detectable in both control and parkinsonian tissue in all areas studied. Cryo-electron transmission microscopy studies showed that ferritin was more heavily loaded with iron in Parkinson's disease when compared with age-matched controls. In summary we have shown that iron levels are increased in two areas of the brain in Parkinson's disease including the substantia nigra, the site of maximal neurodegeneration. This produces increased loading of ferritin, which is the normal brain iron storage protein. It is possible that increased loading of ferritin may increase the risk of free radical-induced damage. Differences in ferritin loading may explain regional differences in iron's effect on the T2 signal.  (+info)