Long terminal repeat sequences of equine infectious anaemia virus are a major determinant of cell tropism. (1/142)

The Wyoming strain of equine infectious anaemia virus (EIAV) is a highly virulent field strain that replicates to high titre in vitro only in primary equine monocyte-derived macrophages. In contrast, Wyoming-derived fibroblast-adapted EIAV strains (Malmquist virus) replicate in primary foetal equine kidney and equine dermis cells as well as in the cell lines FEA and Cf2Th. Wyoming and Malmquist viruses differ extensively both in long terminal repeat (LTR) and envelope region sequences. We have compared the promoter activities of the Wyoming LTR with those of LTRs derived from fibroblast-adapted viruses by examining their abilities to drive a luciferase reporter gene as well as by construction of infectious molecular clones differing only in LTR sequence. Our results indicate that LTR sequences are a major restriction for growth of the Wyoming strain of EIAV in fibroblasts.  (+info)

Interlibrary loan in primary access libraries: challenging the traditional view. (2/142)

INTRODUCTION: Primary access libraries serve as the foundation of the National Network of Libraries of Medicine (NN/LM) interlibrary loan (ILL) hierarchy, yet few published reports directly address the important role these libraries play in the ILL system. This may reflect the traditional view that small, primary access libraries are largely users of ILL, rather than important contributors to the effectiveness and efficiency of the national ILL system. OBJECTIVE: This study was undertaken to test several commonly held beliefs regarding ILL system use by primary access libraries. HYPOTHESES: Three hypotheses were developed. HI: Colorado and Wyoming primary access libraries comply with the recommended ILL guideline of adhering to a hierarchical structure, emphasizing local borrowing. H2: The closures of two Colorado Council of Medical Librarians (CCML) primary access libraries in 1996 resulted in twenty-three Colorado primary access libraries' borrowing more from their state resource library in 1997. H3: The number of subscriptions held by Colorado and Wyoming primary access libraries is positively correlated with the number of items they loan and negatively correlated with the number of items they borrow. METHODS: The hypotheses were tested using the 1992 and 1997 DOCLINE and OCLC data of fifty-four health sciences libraries, including fifty primary access libraries, two state resource libraries, and two general academic libraries in Colorado and Wyoming. The ILL data were obtained electronically and analyzed using Microsoft Word 98, Microsoft Excel 98, and JMP 3.2.2. RESULTS: CCML primary access libraries comply with the recommended guideline to emphasize local borrowing by supplying each other with the majority of their ILLs, instead of overburdening libraries located at higher levels in the ILL hierarchy (H1). The closures of two CCML primary access libraries appear to have affected the entire ILL system, resulting in a greater volume of ILL activity for the state resource library and other DOCLINE libraries higher up in the ILL hierarchy and highlighting the contribution made by CCML primary access libraries (H2). CCML primary access libraries borrow and lend in amounts that are proportional to their collection size, rather than overtaxing libraries at higher levels in the ILL hierarchy with large numbers of requests (H3). LIMITATIONS: The main limitations of this study were the small sample size and the use of data collected for another purpose, the CCML ILL survey. CONCLUSIONS: The findings suggest that there is little evidence to support several commonly held beliefs regarding ILL system use by primary access libraries. In addition to validating the important contributions made by primary access libraries to the national ILL system, baseline data that can be used to benchmark current practice performance are provided.  (+info)

Recolonizing carnivores and naive prey: conservation lessons from Pleistocene extinctions. (3/142)

The current extinction of many of Earth's large terrestrial carnivores has left some extant prey species lacking knowledge about contemporary predators, a situation roughly parallel to that 10,000 to 50,000 years ago, when naive animals first encountered colonizing human hunters. Along present-day carnivore recolonization fronts, brown (also called grizzly) bears killed predator-naive adult moose at disproportionately high rates in Scandinavia, and moose mothers who lost juveniles to recolonizing wolves in North America's Yellowstone region developed hypersensitivity to wolf howls. Although prey that had been unfamiliar with dangerous predators for as few as 50 to 130 years were highly vulnerable to initial encounters, behavioral adjustments to reduce predation transpired within a single generation. The fact that at least one prey species quickly learns to be wary of restored carnivores should negate fears about localized prey extinction.  (+info)

Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. (4/142)

In order to assess the presence of tuberculosis in Pleistocene bison and the origin of tuberculosis in North America, 2 separate DNA extractions were performed by 2 separate laboratories on samples from the metacarpal of an extinct long-horned bison that was radiocarbon dated at 17,870+/-230 years before present and that had pathological changes suggestive of tuberculosis. Polymerase chain reaction amplification isolated fragments of tuberculosis DNA, which were sequenced, and on which spoligotyping was also performed to help determine its relationship to the various members of the Mycobacterium tuberculosis complex. Extensive precautions against contamination with modern M. tuberculosis complex DNA were employed, including analysis of paleontologic and modern specimens in 2 geographically separate laboratories.  (+info)

Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. (5/142)

Oligodeoxynucleotide hybridization probes were developed to complement specific regions of the small subunit (SSU) rRNA sequences of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria, which inhabit hot spring microbial mats. The probes were used to investigate the natural distribution of SSU rRNAs from these species in mats of Yellowstone hot springs of different temperatures and pHs as well as changes in SSU rRNA distribution resulting from 1-week in situ shifts in temperature, pH, and light intensity. Synechococcus lividus Y-7c-s SSU rRNA was detected only in the mat of a slightly acid spring, from which it may have been initially isolated, or when samples from a more alkaline spring were incubated in the more acid spring. Chloroflexus aurantiacus Y-400-fl SSU rRNA was detected only in a high-temperature mat sample from the alkaline Octopus Spring or when lower-temperature samples from this mat were incubated at the high-temperature site. SSU rRNAs of uncultivated species were more widely distributed. Temperature distributions and responses to in situ temperature shifts suggested that some of the uncultivated cyanobacteria might be adapted to high-, moderate-, and low-temperature ranges whereas an uncultivated Chloroflexus-like bacterium appears to have broad temperature tolerance. SSU rRNAs of all uncultivated species inhabiting a 48 to 51 degrees C Octopus Spring mat site were most abundant in the upper 1 mm and were not detected below a 2.5-to 3.5-mm depth, a finding consistent with their possible phototrophic nature. However, the effects of light intensity reduction on these SSU rRNAs were variable, indicating the difficulty of demonstrating a phototrophic phenotype in light reduction experiments.  (+info)

Complex polar lipids of a hot spring cyanobacterial mat and its cultivated inhabitants. (6/142)

The complex polar lipids of the hot spring cyanobacterial mat in the 50 to 55 degrees C region of Octopus Spring, Yellowstone National Park, and of thermophilic bacteria cultivated from this or similar habitats, were compared in an attempt to understand the microbial sources of the major lipid biomarkers in this community. Intact complex lipids were analyzed directly by fast atom bombardment mass spectrometry (FAB-MS), two-dimensional thin-layer chromatography (TLC), and combined TLC-FAB-MS. FAB-MS and TLC gave qualitatively similar results, suggesting that the mat contains major lipids most like those of the cyanobacterial isolate we studied, Synechococcus sp. strain Y-7c-s. These include monoglycosyl, diglycosyl, and sulfoquinosovyl diglycerides (MG, DG, and SQ, respectively) and phosphatidyl glycerol (PG). Though Chloroflexus aurantiacus also contains MG, DG, and PG, the fatty acid chain lengths of mat MGs, DGs, and PGs resemble more those of cyanobacterial than green nonsulfur bacterial lipids. FAB-MS spectra of the lipids of nonphototrophic bacterial isolates were distinctively different from those of the mat and phototrophic isolates. The lipids of these nonphototrophic isolates were not detected in the mat, but most could be detected when added to mat samples. The mat also contains major glycolipids and aminophospholipids of unknown structure and origin. FAB-MS and TLC did not always give quantitatively similar results. In particular, PG and SQ may give disproportionately high FAB-MS responses.  (+info)

Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. (7/142)

Recent molecular studies have shown a great disparity between naturally occurring and cultivated microorganisms. We investigated the basis for disparity by studying thermophilic unicellular cyanobacteria whose morphologic simplicity suggested that a single cosmopolitan species exists in hot spring microbial mats worldwide. We found that partial 16S rRNA sequences for all thermophilic Synechococcus culture collection strains from diverse habitats are identical. Through oligonucleotide probe analysis and cultivation, we provide evidence that this species is strongly selected for in laboratory culture to the exclusion of many more-predominant cyanobacterial species coexisting in the Octopus Spring mat in Yellowstone National Park. The phylogenetic diversity among Octopus Spring cyanobacteria is of similar magnitude to that exhibited by all cyanobacteria so far investigated. We obtained axenic isolates of two predominant cyanobacterial species by diluting inocula prior to enrichment. One isolate has a 16S rRNA sequence we have not yet detected by cloning. The other has a 16S rRNA sequence identical to a new cloned sequence we report herein. This is the first cultivated species whose 16S rRNA sequence has been detected in this mat system by cloning. We infer that biodiversity within this community is linked to guild structure.  (+info)

Light-induced motility of thermophilic Synechococcus isolates from Octopus Spring, Yellowstone National Park. (8/142)

This study demonstrates light-induced motility of two thermophilic Synechococcus isolates that are morphologically similar but that belong to different cyanobacterial lineages. Both isolates migrated away from densely inoculated streaks to form fingerlike projections extending toward or away from the light source, depending on the light intensity. However, the two isolates seemed to prefer widely different light conditions. The behavior of each isolate was controlled by several factors, including temperature, preacclimation of inocula, acclimation during the experiment, and strain-specific genetic preferences for different light conditions (adaptation). Time-lapse microscopy confirmed that these projections were formed by actively gliding cells and were not simply the outcome of directional cell division. The observed motility rates of individual cells of 0.1 to 0.3 micrometers s-1 agreed well with the distance traversed by the projections, 0.3 to 0.5 mm h-1, suggesting that most cells in each projection are travelling in the same direction. The finding of motility among two phylogenetically unaffiliated unicellular cyanobacteria suggests that this trait may be widespread among this group. If so, this would have important implications for experiments on colonization, succession, diel positioning, and photosynthetic activity in hot spring mats dominated by Synechococcus-like cyanobacteria.  (+info)