Therapeutic considerations of L-glutamine: a review of the literature. (73/7861)

The most abundant amino acid in the bloodstream, L-glutamine fulfills a number of biochemical needs. It operates as a nitrogen shuttle, taking up excess ammonia and forming urea. It can contribute to the production of other amino acids, glucose, nucleotides, protein, and glutathione. Glutamine is primarily formed and stored in skeletal muscle and lungs, and is the principal metabolic fuel for small intestine enterocytes, lymphocytes, macrophages, and fibroblasts. Supplemental use of glutamine, either in oral, enteral, or parenteral form, increases intestinal villous height, stimulates gut mucosal cellular proliferation, and maintains mucosal integrity. It also prevents intestinal hyperpermeability and bacterial translocation, which may be involved in sepsis and the development of multiple organ failure. L-glutamine use has been found to be of great importance in the treatment of trauma and surgery patients, and has been shown to decrease the incidence of infection in these patients. Cancer patients often develop muscle glutamine depletion, due to uptake by tumors and chronic protein catabolism. Glutamine may be helpful in offsetting this depletion; however, it may also stimulate the growth of some tumors. The use of glutamine with cancer chemotherapy and radiotherapy seems to prevent gut and oral toxic side-effects, and may even increase the effectiveness of some chemotherapy drugs.  (+info)

Thymosin beta4 accelerates wound healing. (74/7861)

Angiogenesis is an essential step in the repair process that occurs after injury. In this study, we investigated whether the angiogenic thymic peptide thymosin beta4 (Tbeta4) enhanced wound healing in a rat full thickness wound model. Addition of Tbeta4 topically or intraperitoneally increased reepithelialization by 42% over saline controls at 4 d and by as much as 61% at 7 d post-wounding. Treated wounds also contracted at least 11% more than controls by day 7. Increased collagen deposition and angiogenesis were observed in the treated wounds. We also found that Tbeta4 stimulated keratinocyte migration in the Boyden chamber assay. After 4-5 h, migration was stimulated 2-3-fold over migration with medium alone when as little as 10 pg of Tbeta4 was added to the assay. These results suggest that Tbeta4 is a potent wound healing factor with multiple activities that may be useful in the clinic.  (+info)

Counterregulation of interleukin-18 mRNA and protein expression during cutaneous wound repair in mice. (75/7861)

Recent work has suggested interleukin-18 to represent a proinflammatory cytokine that contributes to systemic and local inflammation. As the process of cutaneous wound healing crucially involves an inflammatory phase of repair, we investigated the regulation of interleukin-18 during the repair process. In non-wounded skin we observed high levels of interleukin-18 mRNA, whereas corresponding interleukin-18 protein was expressed only at low basal levels. Upon injury, we found a rapid and large induction of interleukin-18 protein expression, which is directly correlated with decreasing mRNA levels within the wound. Immunohistochemical analysis revealed different sites of expression in the wounded area, with keratinocytes as one major source of interleukin-18 production. The counterregulation of interleukin-18 mRNA and protein expression during wound repair in vivo might represent a general mechanism for interleukin-18 expressional regulation, as cytokine-stimulated keratinocytes exhibit a similar downregulation of interleukin-18 mRNA that is directly associated with increasing interleukin-18 protein levels in vitro. The rapid induction of interleukin-18 during wound healing suggests a role for interleukin-18 within the early phase of repair rather than a role in costimulation of interferon-gamma release from T cells, which are present in high numbers within the wounded area only during the late inflammatory phase of repair.  (+info)

Adenoviral-mediated overexpression of platelet-derived growth factor-B corrects ischemic impaired wound healing. (76/7861)

Chronic wounds represent a major clinical problem with significant morbidity and healthcare expenditures, but no effective therapies. Topical platelet-derived growth factor-BB trials have required large and repeated doses to achieve only a modest effect. We examined the ability of an adenovirus containing the platelet-derived growth factor-B transgene to improve the rate of wound healing through induction of platelet-derived growth factor-B overexpression in cells participating in the wound healing response. We treated excisional wounds in the ischemic rabbit ear, which have a 60% delay in healing, with vehicle, 106, or 108 plaque-forming units of an adenovirus containing the platelet-derived growth factor-B per wound (n = 19). At 7 d this resulted in a decrease in the epithelial gap from 3.4 +/- 1 mm (mean +/- SD) in vehicle-treated wounds to 1.9 +/- 1.8 mm (mean +/- SD, p < 0.05) when treated with 106 plaque-forming units of an adenovirus containing the platelet-derived growth factor-B, and 0.7 +/- 1.1 mm (mean +/- SD, p < 0.001) when treated with 108 plaque-forming units of an adenovirus containing the platelet-derived growth factor-B. Ischemic excisional wounds treated with 108 plaque-forming units of an adenovirus containing the platelet-derived growth factor-B even healed more rapidly than non-ischemic excisional wounds treated with vehicle (p < 0.05). In contrast, 5 microg of platelet-derived growth factor-BB protein (n = 2) resulted in only modest granulation tissue at the margin, but no significant differences in epithelial gap (3 +/- 0.6 mm, mean +/- SD). Plaque-forming units (106 or 108) of an adenovirus containing the beta-galactosidase transgene (n = 4) impaired wound re-epithelialization with an epithelial gap of 5.11 +/- 0.69 mm, mean +/- SD, p < 0.004, and 3.8 +/- 0.57 mm, mean +/- SD, p < 0.07, respectively. Adenoviral-mediated gene transfer of platelet-derived growth factor-B overcame the ischemic defect in wound healing and offers promise in the treatment of chronic nonhealing wounds. The vulnerary effects of platelet-derived growth factor-B overexpression were sufficient to overcome the adverse effects of the adenovirus or transgene on wound healing.  (+info)

Wound healing: The power of the purse string. (77/7861)

Recently, Xenopus oocytes have been shown to repair wounds using a contractile system composed of actin and myosin-II. The work underscores the importance of actin-based myosin-II contractility in cellular and supracellular 'purse strings' that function in diverse biological processes.  (+info)

Functional overlap between two classes of matrix-degrading proteases in wound healing. (78/7861)

Retarded wound healing was found in mice deficient in the serine protease precursor plasminogen, as well as in wild-type mice treated with the metalloprotease inhibitor galardin, but in both cases wound closure was ultimately completed in all mice within 60 days. The expression of several matrix metalloproteases in keratinocytes migrating to cover the wound was strongly enhanced by galardin treatment. However, when plasminogen-deficient mice were treated with galardin, healing was completely arrested and wound closure was not seen during an observation period of 100 days, demonstrating that protease activity is essential for skin wound healing. The requirement for both plasminogen deficiency and metalloprotease inhibition for complete inhibition of the healing process indicates that there is a functional overlap between the two classes of matrix-degrading proteases, probably in the dissection of the fibrin-rich provisional matrix by migrating keratinocytes. Each class alone is capable of maintaining sufficient keratinocyte migration to regenerate the epidermal surface, although this function would normally be performed by both classes acting in parallel. Since there are strong similarities between the proteolytic mechanisms in wound healing and cancer invasion, these results predict that complete arrest of this latter process in therapeutic settings will require the use of inhibitors of both classes of proteases.  (+info)

Keratinocyte-specific ablation of Stat3 exhibits impaired skin remodeling, but does not affect skin morphogenesis. (79/7861)

To elucidate the biological role of Stat3 in the skin, conditional gene targeting using the Cre-loxP system was performed as germline Stat3 ablation leads to embryonic lethality. K5-Cre;Stat3(flox/-) transgenic mice, whose epidermal and follicular keratinocytes lack functional Stat3, were viable and the development of epidermis and hair follicles appeared normal. However, hair cycle and wound healing processes were severely compromised. Furthermore, mutant mice expressed sparse hair and developed spontaneously occurring ulcers with age. Growth factor-dependent in vitro migration of Stat3-disrupted keratinocytes was impaired despite normal proliferative responses. We therefore conclude that Stat3 plays a crucial role in transducing a signal required for migration but not for proliferation of keratinocytes, and that Stat3 is essential for skin remodeling, including hair cycle and wound healing.  (+info)

Lacrimal gland HGF, KGF, and EGF mRNA levels increase after corneal epithelial wounding. (80/7861)

PURPOSE: To evaluate the effect of corneal epithelial wounding on lacrimal gland expression of hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and epidermal growth factor (EGF) in the rabbit model. METHODS: Rabbits had corneal epithelial scrape injuries, and the lacrimal gland was removed at different times after wounding. HGF, KGF, and EGF mRNA expression was examined by quantitative RNase protection assay. HGF, KGF, and EGF proteins were detected in rabbit lacrimal tissue using immunoprecipitation and western blot analysis. RESULTS: HGF mRNA and EGF mRNA were significantly increased in rabbit lacrimal gland tissue within 8 hours after corneal epithelial injury. The increase in KGF mRNA expression was small and reached significance I clay after corneal injury. Lacrimal gland expression peaked at 3 days after wounding for each growth factor mRNA, the same day, on average, that the epithelial defect healed. After the peak increase in expression, there was a progressive decline in expression of each growth factor mRNA, but production was still increased compared with prewound levels. HGF protein, KGF protein, and EGF proteins were detected in rabbit lacrimal gland tissue. CONCLUSIONS: Levels of HGF, KGF, and EGF mRNAs increase in rabbit lacrimal gland tissue in response to corneal epithelial wounding. The results of this study are consistent with the existence of a cornea-nervous system-lacrimal gland regulatory loop modulating expression of these growth factor mRNAs. The lacrimal gland is a likely source of increased HGF and EGF proteins detected in tears in previous studies.  (+info)