Energy expenditure and substrate utilization in adults with cystic fibrosis and diabetes mellitus. (1/231)

BACKGROUND: The onset of cystic fibrosis-related diabetes mellitus (CFDM) is often associated with a decline in clinical and nutritional status. OBJECTIVE: The purpose of this study was to characterize energy expenditure (EE) and substrate utilization during rest, exercise, and recovery from exercise in patients with CF diagnosed with diabetes mellitus. DESIGN: EE, substrate utilization, minute ventilation, tidal volume, and respiratory rate were calculated by indirect calorimetry durng rest; a 30-min, low-to-medium-intensity exercise bout on a treadmill; and a 45-min postexercise recovery period (in reclining position) in 10 CF, 7 CFDM, and 10 control subjects between 18 and 45 y of age. RESULTS: In all 3 periods, minute ventilation was higher in the CF and CFDM groups than in the control subjects (P < 0.01). During rest and exercise, the CF and CFDM groups maintained EE values at the high end of the normal range of the control subjects. However, during recovery, EE was higher in the CF and CFDM groups than in the control group (P < 0.01). CONCLUSIONS: EE may be higher than usual for the patients with CF and CFDM during periods of recovery from mild exercise or activity because of increased work of breathing consistent with higher ventilatory requirements. This information may be useful for patients receiving nutritional counseling who may choose to exercise regularly, but are concerned about possible weight loss.  (+info)

Estimation of inspiratory pressure drop in neonatal and pediatric endotracheal tubes. (2/231)

Endotracheal tubes (ETTs) constitute a resistive extra load for intubated patients. The ETT pressure drop (DeltaP(ETT)) is usually described by empirical equations that are specific to one ETT only. Our laboratory previously showed that, in adult ETTs, DeltaP(ETT) is given by the Blasius formula (F. Lofaso, B. Louis, L. Brochard, A. Harf, and D. Isabey. Am. Rev. Respir. Dis. 146: 974-979, 1992). Here, we also propose a general formulation for neonatal and pediatric ETTs on the basis of adimensional analysis of the pressure-flow relationship. Pressure and flow were directly measured in seven ETTs (internal diameter: 2.5-7.0 mm). The measured pressure drop was compared with the predicted drop given by general laws for a curved tube. In neonatal ETTs (2.5-3.5 mm) the flow regime is laminar. The DeltaP(ETT) can be estimated by the Ito formula, which replaces Poiseuille's law for curved tubes. For pediatric ETTs (4.0-7.0 mm), DeltaP(ETT) depends on the following flow regime: for laminar flow, it must be calculated by the Ito formula, and for turbulent flow, by the Blasius formula. Both formulas allow for ETT geometry and gas properties.  (+info)

Muscle kinematics for minimal work of breathing. (3/231)

A mathematical model was analyzed to obtain a quantitative and testable representation of the long-standing hypothesis that the respiratory muscles drive the chest wall along the trajectory for which the work of breathing is minimal. The respiratory system was modeled as a linear elastic system that can be expanded either by pressure applied at the airway opening (passive inflation) or by active forces in respiratory muscles (active inflation). The work of active expansion was calculated, and the distribution of muscle forces that produces a given lung expansion with minimal work was computed. The calculated expression for muscle force is complicated, but the corresponding kinematics of muscle shortening is simple: active inspiratory muscles shorten more during active inflation than during passive inflation, and the ratio of active to passive shortening is the same for all active muscles. In addition, the ratio of the minimal work done by respiratory muscles during active inflation to work required for passive inflation is the same as the ratio of active to passive muscle shortening. The minimal-work hypothesis was tested by measurement of the passive and active shortening of the internal intercostal muscles in the parasternal region of two interspaces in five supine anesthetized dogs. Fractional changes in muscle length were measured by sonomicrometry during passive inflation, during quiet breathing, and during forceful inspiratory efforts against a closed airway. Active muscle shortening during quiet breathing was, on average, 70% greater than passive shortening, but it was only weakly correlated with passive shortening. Active shortening inferred from the data for more forceful inspiratory efforts was approximately 40% greater than passive shortening and was highly correlated with passive shortening. These data support the hypothesis that, during forceful inspiratory efforts, muscle activation is coordinated so as to expand the chest wall with minimal work.  (+info)

Influence of respiratory muscle work on VO(2) and leg blood flow during submaximal exercise. (4/231)

The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).  (+info)

Impaired load dependence of diaphragm relaxation during congestive heart failure in the rabbit. (5/231)

The load dependence (LD) of relaxation was studied in the diaphragm of rabbits with congestive heart failure (CHF). CHF (n = 15) was induced by combined chronic volume and pressure overload. Aortic insufficiency was induced by forcing a catheter through the aortic sigmoid valves, followed 3 wk later by abdominal aortic stenosis. Six weeks after the first intervention, animals developed CHF. Sham-operated animals served as controls (C; n = 12). Diaphragm mechanics were studied in vitro on isolated strips, at 22 degrees C, in isotonic and isometric loading conditions. Contractility was lower in the CHF group, as reflected by lower total tension: 1.11 +/- 0.10 in CHF vs. 2.38 +/- 0.15 N/cm(2) in C in twitch (P < 0.001) and 2.46 +/- 0.22 in CHF vs. 4.90 +/- 0.25 N. cm(-2) in C in tetanus (P < 0.001). The index LD was used to quantify the load dependence of relaxation: LD is <1 in load-dependent muscles and tends toward 1 in load-independent muscles. LD was significantly higher in CHF than in C rabbits, in both twitch (0.99 +/- 0.01 vs. 0.75 +/- 0.03; P < 0. 001) and tetanus (0.95 +/- 0.02 vs. 0.84 +/- 0.02; P < 0.001). In the CHF rabbits' diaphragm, the fall in total tension was linearly related to the fall in load dependence of relaxation. The decrease in load dependence of relaxation in CHF animals suggests sarcoplasmic reticulum abnormalities. Impairment of the sarcoplasmic reticulum may also partly account for the decrease in contractile performance of diaphragm in CHF animals.  (+info)

Static respiratory muscle work during immersion with positive and negative respiratory loading. (6/231)

Upright immersion imposes a pressure imbalance across the thorax. This study examined the effects of air-delivery pressure on inspiratory muscle work during upright immersion. Eight subjects performed respiratory pressure-volume relaxation maneuvers while seated in air (control) and during immersion. Hydrostatic, respiratory elastic (lung and chest wall), and resultant static respiratory muscle work components were computed. During immersion, the effects of four air-delivery pressures were evaluated: mouth pressure (uncompensated); the pressure at the lung centroid (PL,c); and at PL,c +/-0.98 kPa. When breathing at pressures less than the PL,c, subjects generally defended an expiratory reserve volume (ERV) greater than the immersed relaxation volume, minus residual volume, resulting in additional inspiratory muscle work. The resultant static inspiratory muscle work, computed over a 1-liter tidal volume above the ERV, increased from 0.23 J. l(-1), when subjects were breathing at PL,c, to 0.83 J. l(-1) at PL,c -0.98 kPa (P < 0.05), and to 1.79 J. l(-1) at mouth pressure (P < 0.05). Under the control state, and during the above experimental conditions, static expiratory work was minimal. When breathing at PL,c +0.98 kPa, subjects adopted an ERV less than the immersed relaxation volume, minus residual volume, resulting in 0.36 J. l(-1) of expiratory muscle work. Thus static inspiratory muscle work varied with respiratory loading, whereas PL,c air supply minimized this work during upright immersion, restoring lung-tissue, chest-wall, and static muscle work to levels obtained in the control state.  (+info)

Response to inspiratory resistive loading during sleep in normal children and children with obstructive apnea. (7/231)

The response to inspiratory resistance loading (IRL) of the upper airway during sleep in children is not known. We, therefore, evaluated the arousal responses to IRL during sleep in children with the obstructive sleep apnea syndrome (OSAS) compared with controls. Children with OSAS aroused at a higher load than did controls (23 +/- 8 vs. 15 +/- 7 cmH(2)O. l(-1). s; P < 0.05). Patients with OSAS had higher arousal thresholds during rapid eye movement (REM) vs. non-REM sleep (P < 0.001), whereas normal subjects had lower arousal thresholds during REM (P < 0.005). Ventilatory responses to IRL were evaluated in the controls. There was a marked decrease in tidal volume both immediately (56 +/- 17% of baseline at an IRL of 15 cmH(2)O. l(-1). min; P < 0.001) and after 3 min of IRL (67 +/- 23%, P < 0.005). The duty cycle increased. We conclude that children with OSAS have impaired arousal responses to IRL. Despite compensatory changes in respiratory timing, normal children have a decrease in minute ventilation in response to IRL during sleep. However, arousal occurs before gas-exchange abnormalities.  (+info)

Chronic recordings of hypoglossal nerve activity in a dog model of upper airway obstruction. (8/231)

The activity of the hypoglossal nerve was recorded during pharyngeal loading in sleeping dogs with chronically implanted cuff electrodes. Three self-coiling spiral-cuff electrodes were implanted in two beagles for durations of 17, 7, and 6 mo. During quiet wakefulness and sleep, phasic hypoglossal activity was either very small or not observable above the baseline noise. Applying a perpendicular force on the submental region by using a mechanical device to narrow the pharyngeal airway passage increased the phasic hypoglossal activity, the phasic esophageal pressure, and the inspiratory time in the next breath during non-rapid-eye-movement sleep. The phasic hypoglossal activity sustained at the elevated level while the force was present and increased with increasing amounts of loading. The hypoglossal nerve was very active in rapid-eye-movement sleep, especially when the submental force was present. The data demonstrate the feasibility of chronic recordings of the hypoglossal nerve with cuff electrodes and show that hypoglossal activity has a fast and sustained response to the internal loading of the pharynx induced by applying a submental force during non-rapid-eye-movement sleep.  (+info)