Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. (1/77)

Five new withanolide derivatives (1, 9-12) were isolated from the roots of Withania somnifera together with fourteen known compounds (2-8, 13-19). On the basis of spectroscopic and physiochemical evidence, compounds 1 and 9-12 were determined to be (20S,22R)-3 alpha,6 alpha-epoxy-4 beta,5 beta,27-trihydroxy-1-oxowitha-24-enolide (1), 27-O-beta-D-glucopyranosylpubesenolide 3-O-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranoside (withanoside VIII, 9), 27-O-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranosylpubesenolide 3-O-beta-D-glucopyranosyl (1-->6)-beta-D-glucopyranoside (withanoside IX, 10), 27-O-beta-D-glucopyranosylpubesenolide 3-O-beta-D-glucopyranoside (withanoside X, 11), and (20R,22R)-1 alpha,3 beta,20,27-tetrahydroxywitha-5,24-dienolide 3-O-beta-D-glucopyranoside (withanoside XI, 12). Of the isolated compounds, 1, withanolide A (2), (20S,22R)-4 beta,5 beta,6 alpha,27-tetrahydroxy-1-oxowitha-2,24-dienolide (6), withanoside IV (14), withanoside VI (15) and coagulin Q (16) showed significant neurite outgrowth activity at a concentration of 1 microM on a human neuroblastoma SH-SY5Y cell line.  (+info)

Radiosensitizing effect of withaferin A combined with hyperthermia on mouse fibrosarcoma and melanoma. (2/77)

The effect of withaferin A, a plant withanolide, alone or in combination with acute and fractionated radiotherapy and/or hyperthermia, was tested on two mouse tumors, B16F1 melanoma and fibrosarcoma, grown in C57BL and Swiss albino mice, respectively. Tumors were exposed locally to 30 or 50 Gy gamma radiation as acute dose, or 5 fractions of 10 Gy. Withaferin A, 40 mg/kg, was injected intraperitoneally, 1h before acute irradiation, or 30 mg/kg before every 10 Gy fraction. Local hyperthermia, 43 degrees C for 30 min, followed acute RT or first fraction of 10 Gy. Withaferin A, radiation and hyperthermia, individually and in bimodality treatments, produced no complete response (CR) in melanoma. Some CR were seen in fibrosarcoma, which increased after bimodality treatments. Trimodality treatment synergistically increased CR to 37% in melanoma and to 64% in fibrosarcoma. Fractionated radiotherapy (10 Gy x 5) was more effective (25% CR) than acute dose of 50 Gy (0% CR) on melanoma, while there was no difference between the response of fibrosarcoma to the two regimens. Withaferin A with fractionated radiotherapy synergistically increased the CR of both tumors; hyperthermia further enhanced this effect. Utility of withaferin A in increasing the clinical response of radioresistant tumors to fractionated radiotherapy has to be explored.  (+info)

Development of withaferin A analogs as probes of angiogenesis. (3/77)

The natural product withaferin A (WFA) is a potent angiogenesis inhibitor and it targets the ubiquitin-proteasome pathway in vascular endothelial cells. We generated a biotinylated affinity analog WFA-LC(2)B for use as a probe to study angiogenesis. WFA-LC(2)B inhibits angiogenic sprouting in vitro and it causes levels of ubiquitinated proteins to increase in tumor necrosis factor-alpha-treated human umbilical vein endothelial cells, confirming the retention of WFA's biological activity. We show that WFA-LC(2)B forms protein adducts in endothelial cells which are competed by free WFA in vivo. This WFA-LC(2)B analog will be useful to isolate the biological target of WFA.  (+info)

Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. (4/77)

Protein kinase C (PKC) is an important constituent of the signaling pathways involved in apoptosis. We report here that like staurosporine, withaferin A is a potent inhibitor of PKC. In Leishmania donovani, the inhibition of PKC by withaferin A causes depolarization of DeltaPsim and generates ROS inside cells. Loss of DeltaPsim leads to the release of cytochrome c into the cytosol and subsequently activates caspase-like proteases and oligonucleosomal DNA cleavage. Moreover, in treated cells, oxidative DNA lesions facilitate the stabilization of topoisomerase I-mediated cleavable complexes, which also contribute to DNA fragmentation. However, withaferin A and staurosporine cannot induce cleavable complex formation in vitro with recombinant topoisomerase I nor with nuclear extracts from control cells. Taken together, our results indicate that inhibition of PKC by withaferin A is a central event for the induction of apoptosis and that the stabilization of topoisomerase I-DNA complex is necessary to amplify apoptotic process.  (+info)

Small molecule anti-angiogenic probes of the ubiquitin proteasome pathway: potential application to choroidal neovascularization. (5/77)

PURPOSE: To characterize the angiogenic and inflammatory responses of human choroidal endothelial cells (HCECs) to stimulators and inhibitors of the ubiquitin proteasome pathway (UPP). METHODS: The regulation of the UPP by the inhibitor withaferin A and its congener, withanolide D, two natural products derived from the medicinal plant Withania somnifera was assessed in the three-dimensional endothelial cell sprouting assay (3D-ECSA), by using HCEC- and human umbilical vein endothelial cell (HUVEC)-derived spheroids embedded in a collagen I matrix. Western blot analysis was used to investigate the effect of withanolides on IkappaB-alpha, polyubiquitination, and heme oxygenase (HO)-1 regulation in HCEC and HUVEC cultures. RESULTS: HCECs, like HUVECs, responded to fibroblast growth factor-2, vascular endothelial growth factor, and tumor necrosis factor (TNF)-alpha stimulation and sprouted vessel-like structures in collagen I matrix. However, HCECs were slower to generate these sprouting vessels, when compared with HUVECs. The extent of inhibition of endothelial cell sprouting in 3D matrix, the blockade of TNF-alpha-induced IkappaB-alpha degradation, levels of global polyubiquitinated proteins, and induced production of HO-1 in response to treatment by the withanolides in cultured endothelial cells was similarly regulated between HCECs and HUVECs. CONCLUSIONS: HCECs share with HUVECs a similar response to UPP inhibitors, suggesting that this well-conserved pathway that regulates angioinflammatory mechanisms could be exploited for drug-targeting in the development of novel agents for CNV treatment.  (+info)

The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry". (6/77)

Withaferin A (WA) is a steroidal lactone purified from medicinal plant "Indian Winter Cherry" that is widely researched for its variety of properties, including antitumor effects. However, the primary molecular target of WA is unknown. By chemical structure analysis, we hypothesized that Withaferin A might be a natural proteasome inhibitor. Computational modeling studies consistently predict that C1 and C24 of WA are highly susceptible toward a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit beta5. Furthermore, WA potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50=4.5 microM) and 26S proteasome in human prostate cancer cultures (at 5-10 microM) and xenografts (4-8 mg/kg/day). Inhibition of prostate tumor cellular proteasome activity in cultures and in vivo by WA results in accumulation of ubiquitinated proteins and three proteasome target proteins (Bax, p27, and IkappaB-alpha) accompanied by androgen receptor protein suppression (in androgen-dependent LNCaP cells) and apoptosis induction. Treatment of WA under conditions of the aromatic ketone reduction, or reduced form of Celastrol, had significantly decreased the proteasome-inhibitory and apoptosis-inducing activities. Treatment of human prostate PC-3 xenografts with WA for 24 days resulted in 70% inhibition of tumor growth in nude mice, associated with 56% inhibition of the tumor tissue proteasomal chymotrypsinlike activity. Our results demonstrate that the tumor proteasome beta5 subunit is the primary target of WA, and inhibition of the proteasomal chymotrypsin-like activity by WA in vivo is responsible for, or contributes to, the antitumor effect of this ancient medicinal compound.  (+info)

Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. (7/77)

The transcription factor NFkappaB plays a critical role in normal and pathophysiological immune responses. Therefore, NFkappaB and the signaling pathways that regulate its activation have become a major focus of drug development programs. Withania somnifera (WS) is a medicinal plant that is widely used in Palestine for the treatment of various inflammatory disorders. In this study we show that the leave extract of WS, as well as its major constituent withaferin A (WA), potently inhibits NFkappaB activation by preventing the tumor necrosis factor-induced activation of IkappaB kinase beta via a thioalkylation-sensitive redox mechanism, whereas other WS-derived steroidal lactones, such as withanolide A and 12-deoxywithastramonolide, are far less effective. To our knowledge, this is the first communication of IkappaB kinase beta inhibition by a plant-derived inhibitor, coinciding with MEK1/ERK-dependent Ser-181 hyperphosphorylation. This prevents IkappaB phosphorylation and degradation, which subsequently blocks NFkappaB translocation, NFkappaB/DNA binding, and gene transcription. Taken together, our results indicate that pure WA or WA-enriched WS extracts can be considered as a novel class of NFkappaB inhibitors, which hold promise as novel anti-inflammatory agents for treatment of various inflammatory disorders and/or cancer.  (+info)

Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. (8/77)

Deletion or mutation of the androgen receptor (AR) renders prostate tumors refractory to apoptosis by androgen ablation, the mainstay of prostate cancer therapy. To identify novel therapeutics that can induce apoptosis regardless of the AR status of prostate cancer cells, we screened dietary herbal compounds using a reporter assay for the prostate apoptosis response-4 (Par-4) gene, which induces p53- and PTEN-independent and cancer-selective apoptosis. One of the compounds, withaferin A (WA), a major constituent of the dietary compound Withania somnifera, induced Par-4-dependent apoptosis in androgen-refractory prostate cancer cells and regression of PC-3 xenografts in nude mice. Interestingly, restoration of wild-type AR in PC-3 (AR negative) cells abrogated both Par-4 induction and apoptosis by WA. Individually, WA and anti-androgens induced neither Par-4 nor apoptosis in androgen-responsive prostate cancer cells, yet in combination, WA and anti-androgen synergistically induced Par-4 and apoptosis in androgen-responsive prostate cancer cells. Thus, when judiciously combined with anti-androgens, WA inhibits survival of both androgen-responsive and androgen-refractory prostate cancer cells by a Par-4-dependent mechanism. As Par-4 up-regulation induces apoptosis in most tumor cells, our findings can be extended to high-throughput screens to identify synergistic combinations for both therapy-sensitive and therapy-resistant cancers.  (+info)