West Nile encephalitis in Israel, 1999: the New York connection. (49/1412)

We describe two cases of West Nile (WN) encephalitis in a married couple in Tel Aviv, Israel, in 1999. Reverse transcription-polymerase chain reaction performed on a brain specimen from the husband detected a WN viral strain nearly identical to avian strains recovered in Israel in 1998 (99.9% genomic sequence homology) and in New York in 1999 (99.8%). This result supports the hypothesis that the 1999 WN virus epidemic in the United States originated from the introduction of a strain that had been circulating in Israel.  (+info)

Dead crow densities and human cases of West Nile virus, New York State, 2000. (50/1412)

In 2000, Staten Island, New York, reported 10 human West Nile virus cases and high densities of dead crows. Surrounding counties with <2 human cases had moderate dead crow densities, and upstate counties with no human cases had low dead crow densities. Monitoring such densities may be helpful because this factor may be determined without the delays associated with specimen collection and testing.  (+info)

Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura. (51/1412)

Fourteen isolations of West Nile (WN) virus were obtained from four mosquito species (Culex pipiens [5], Cx. restuans [4], Cx. salinarius [2], and Culiseta melanura [3]) in statewide surveillance conducted from June through October 2000. Most isolates were obtained from mosquitoes collected in densely populated residential locales in Fairfield and New Haven counties, where the highest rates of dead crow sightings were reported and where WN virus was detected in 1999. Minimum field infection rates per 1,000 mosquitoes ranged from 0.5 to 1.8 (county based) and from 1.3 to 76.9 (site specific). Cx. restuans appears to be important in initiating WN virus transmission among birds in early summer; Cx. pipiens appears to play a greater role in amplifying virus later in the season. Cs. melanura could be important in the circulation of WN virus among birds in sylvan environments; Cx. salinarius is a suspected vector of WN virus to humans and horses.  (+info)

West Nile virus infection in birds and mosquitoes, New York State, 2000. (52/1412)

West Nile (WN) virus was found throughout New York State in 2000, with the epicenter in New York City and surrounding counties. We tested 3,403 dead birds and 9,954 mosquito pools for WN virus during the transmission season. Sixty-three avian species, representing 30 families and 14 orders, tested positive for WN virus. The highest proportion of dead birds that tested positive for WN virus was in American Crows in the epicenter (67% positive, n=907). Eight mosquito species, representing four genera, were positive for WN virus. The minimum infection rate per 1,000 mosquitoes (MIR) was highest for Culex pipiens in the epicenter: 3.53 for the entire season and 7.49 for the peak week of August 13. Staten Island had the highest MIR (11.42 for Cx. pipiens), which was associated with the highest proportion of dead American Crows that tested positive for WN virus (92%, n=48) and the highest number of human cases (n=10).  (+info)

West Nile fever outbreak, Israel, 2000: epidemiologic aspects. (53/1412)

From August 1 to October 31, 2000, 417 cases of West Nile (WN) fever were serologically confirmed throughout Israel; 326 (78%) were hospitalized patients. Cases were distributed throughout the country; the highest incidence was in central Israel, the most populated part. Men and women were equally affected, and their mean age was 54+/-23.8 years (range 6 months to 95 years). Incidence per 1,000 population increased from 0.01 in the 1st decade of life to 0.87 in the 9th decade. There were 35 deaths (case-fatality rate 8.4%), all in patients >50 years of age. Age-specific case-fatality rate increased with age. Central nervous system involvement occurred in 170 (73%) of 233 hospitalized patients. The countrywide spread, number of hospitalizations, severity of the disease, and high death rate contrast with previously reported outbreaks in Israel.  (+info)

West Nile outbreak in horses in southern France, 2000: the return after 35 years. (54/1412)

On September 6, 2000, two cases of equine encephalitis caused by West Nile (WN) virus were reported in southern France (Herault Province), near Camargue National Park, where a WN outbreak occurred in 1962. Through November 30, 76 cases were laboratory confirmed among 131 equines with neurologic disorders. The last confirmed case was on November 3, 2000. All but three cases were located in a region nicknamed "la petite Camargue," which has several large marshes, numerous colonies of migratory and resident birds, and large mosquito populations. No human case has been confirmed among clinically suspected patients, nor have abnormal deaths of birds been reported. A serosurvey has been undertaken in horses in the infected area, and other studies are in progress.  (+info)

The relationships between West Nile and Kunjin viruses. (55/1412)

Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.  (+info)

Rapid determination of HLA B*07 ligands from the West Nile virus NY99 genome. (56/1412)

Defined T cell epitopes for West Nile (WN) virus may be useful for developing subunit vaccines against WN virus infection and diagnostic reagents to detect WN virus-specific immune response. We applied a bioinformatics (EpiMatrix) approach to search the WN virus NY99 genome for HLA B*07 restricted cytotoxic T cell (CTL) epitopes. Ninety-five of 3,433 WN virus peptides scored above a predetermined cutoff, suggesting that these would be likely to bind to HLA B*07 and would also be likely candidate CTL epitopes. Compared with other methods for genome mapping, derivation of these ligands was rapid and inexpensive. Major histocompatibility complex ligands identified by this method may be used to screen T cells from WN virus-exposed persons for cell-mediated response to WN virus or to develop diagnostic reagents for immunopathogenesis studies and epidemiologic surveillance.  (+info)