Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. (9/233)

Aquaporin-1 (AQP1) is a water channel expressed abundantly at the apical pole of choroidal epithelial cells. The protein expression was quantified by immunocytochemistry and confocal microscopy in adult rats adapted to altered gravity. AQP1 expression was decreased by 64% at the apical pole of choroidal cells in rats dissected 5.5-8 h after a 14-day spaceflight. AQP1 was significantly overexpressed in rats readapted for 2 days to Earth's gravity after an 11-day flight (48% overshoot, when compared with the value measured in control rats). In a ground-based model that simulates some effects of weightlessness and alters choroidal structures and functions, apical AQP1 expression was reduced by 44% in choroid plexus from rats suspended head down for 14 days and by 69% in rats suspended for 28 days. Apical AQP1 was rapidly enhanced in choroid plexus of rats dissected 6 h after a 14-day suspension (57% overshoot, in comparison with control rats) and restored to the control level when rats were dissected 2 days after the end of a 14-day suspension. Decreases in the apical expression of choroidal AQP1 were also noted in rats adapted to hypergravity in the NASA 24-ft centrifuge: AQP1 expression was reduced by 47% and 85% in rats adapted for 14 days to 2 G and 3 G, respectively. AQP1 is downregulated in the apical membrane of choroidal cells in response to altered gravity and is rapidly restored after readaptation to normal gravity. This suggests that water transport, which is partly involved in the choroidal production of cerebrospinal fluid, might be decreased during spaceflight and after chronic hypergravity.  (+info)

Animal housing influences the response of bone to spaceflight in juvenile rats. (10/233)

The rat has been used extensively as an animal model to study the effects of spaceflight on bone metabolism. The results of these studies have been inconsistent. On some missions, bone formation at the periosteal bone surface of weight-bearing bones is impaired and on others it is not, suggesting that experimental conditions may be an important determinant of bone responsiveness to spaceflight. To determine whether animal housing can affect the response of bone to spaceflight, we studied young growing (juvenile) rats group housed in the animal enclosure module and singly housed in the research animal holding facility under otherwise identical flight conditions (Spacelab Life Science 1). Spaceflight reduced periosteal bone formation by 30% (P < 0.001) and bone mass by 7% in single-housed animals but had little or no effect on formation (-6%) or mass (-3%) in group-housed animals. Group housing reduced the response of bone to spaceflight by as much as 80%. The data suggest that housing can dramatically affect the skeletal response of juvenile rats to spaceflight. These observations explain many of the discrepancies in previous flight studies and emphasize the need to study more closely the effects of housing (physical-social interaction) on the response of bone to the weightlessness of spaceflight.  (+info)

Structural and functional remodeling of skeletal muscle microvasculature is induced by simulated microgravity. (11/233)

Hindlimb unloading of rats results in a diminished ability of skeletal muscle arterioles to constrict in vitro and elevate vascular resistance in vivo. The purpose of the present study was to determine whether alterations in the mechanical environment (i.e., reduced fluid pressure and blood flow) of the vasculature in hindlimb skeletal muscles from 2-wk hindlimb-unloaded (HU) rats induces a structural remodeling of arterial microvessels that may account for these observations. Transverse cross sections were used to determine media cross-sectional area (CSA), wall thickness, outer perimeter, number of media nuclei, and vessel luminal diameter of feed arteries and first-order (1A) arterioles from soleus and the superficial portion of gastrocnemius muscles. Endothelium-dependent dilation (ACh) was also determined. Media CSA of resistance arteries was diminished by hindlimb unloading as a result of decreased media thickness (gastrocnemius muscle) or reduced vessel diameter (soleus muscle). ACh-induced dilation was diminished by 2 wk of hindlimb unloading in soleus 1A arterioles, but not in gastrocnemius 1A arterioles. These results indicate that structural remodeling and functional adaptations of the arterial microvasculature occur in skeletal muscles of the HU rat; the data suggest that these alterations may be induced by reductions in transmural pressure (gastrocnemius muscle) and wall shear stress (soleus muscle).  (+info)

Microtubule self-organization is gravity-dependent. (12/233)

Although weightlessness is known to affect living cells, the manner by which this occurs is unknown. Some reaction-diffusion processes have been theoretically predicted as being gravity-dependent. Microtubules, a major constituent of the cellular cytoskeleton, self-organize in vitro by way of reaction-diffusion processes. To investigate how self-organization depends on gravity, microtubules were assembled under low gravity conditions produced during space flight. Contrary to the samples formed on an in-flight 1 x g centrifuge, the samples prepared in microgravity showed almost no self-organization and were locally disordered.  (+info)

Exploring dynamic similarity in human running using simulated reduced gravity. (13/233)

The Froude number (a ratio of inertial to gravitational forces) predicts the occurrence of dynamic similarity in legged animals over a wide range of sizes and velocities for both walking and running gaits at Earth gravity. This is puzzling because the Froude number ignores elastic forces that are crucial for understanding running gaits. We used simulated reduced gravity as a tool for exploring dynamic similarity in human running. We simulated reduced gravity by applying a nearly constant upward force to the torsos of our subjects while they ran on a treadmill. We found that at equal Froude numbers, achieved through different combinations of velocity and levels of gravity, our subjects did not run in a dynamically similar manner. Thus, the inertial and gravitational forces that comprise the Froude number were not sufficient to characterize running in reduced gravity. Further, two dimensionless numbers that incorporate elastic forces, the Groucho number and the vertical Strouhal number, also failed to predict dynamic similarity in reduced-gravity running. To better understand the separate effects of velocity and gravity, we also studied running mechanics at fixed absolute velocities under different levels of gravity. The effects of velocity and gravity on the requirements of dynamic similarity differed in both magnitude and direction, indicating that there are no two velocity and gravity combinations at which humans will prefer to run in a dynamically similar manner. A comparison of walking and running results demonstrated that reduced gravity had different effects on the mechanics of each gait. This suggests that a single unifying hypothesis for the effects of size, velocity and gravity on both walking and running gaits will not be successful.  (+info)

Selected contribution: PKC activation inhibits Ca(2+) signaling in tracheal epithelial cells kept in simulated microgravity. (14/233)

Microgravity has been shown to alter protein kinase C (PKC) activity; therefore, we investigated whether microgravity influences mechanically stimulated Ca(2+) signaling and ATP-induced Ca(2+) oscillations, both of which are modulated by PKC. Rabbit tracheal epithelial outgrowth cultures or suspended epithelial sheets were rotated in bioreactors to simulate microgravity. Mechanical stimulation of a single cell increased the cytosolic Ca(2+) concentration in 35-55 cells of both outgrowth cultures and epithelial sheets kept at unit gravity (G) or in simulated microgravity (smicroG). In outgrowth cultures, 12-O-tetradecanoylphorbol-13-acetate (TPA; 80 nM), a PKC activator, restricted Ca(2+) "waves" to about 10 cells in unit G and to significantly fewer cells in smicroG. TPA only slightly reduced the spread of Ca(2+) waves in epithelial sheets kept in smicroG but did not inhibit Ca(2+) waves of sheets kept in unit G. In both cell preparations from both conditions, TPA inhibited ATP-induced Ca(2+) oscillations; however, the effect was more pronounced in cells kept in smicroG. These results suggest that PKC activation is more robust in cells subjected to smicroG.  (+info)

Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling. (15/233)

Bone loss occurs as a consequence of exposure to microgravity. Using the hindlimb-unloaded rat to model spaceflight, this study had as its purpose to determine whether skeletal unloading and cephalic fluid shifts alter bone blood flow. We hypothesized that perfusion would be diminished in the hindlimb bones and increased in skeletal structures of the forelimbs and head. Using radiolabeled microspheres, we measured skeletal perfusion during control standing and after 10 min, 7 days, and 28 days of hindlimb unloading (HU). Femoral and tibial perfusion were reduced with 10 min of HU, and blood flow to the femoral shaft and marrow were further diminished with 28 days of HU. Correspondingly, the mass of femora (-11%, P < 0. 05) and tibiae (-6%, P < 0.1) was lowered with 28 days of HU. In contrast, blood flow to the skull, mandible, clavicle, and humerus was increased with 10 min HU but returned to control levels with 7 days HU. Mandibular (+10%, P < 0.05), clavicular (+18%, P < 0.05), and humeral (+8%, P < 0.1) mass was increased with chronic HU. The data demonstrate that simulated microgravity alters bone perfusion and that such alterations correspond to unloading-induced changes in bone mass. These results support the hypothesis that alterations in bone blood flow provide a stimulus for bone remodeling during periods of microgravity.  (+info)

The effects of hindlimb unweighting on the capacitance of rat small mesenteric veins. (16/233)

Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.  (+info)