Heart period and heart period variability during sleep on the MIR space station. (1/386)

The long-term acclimation of cardiac rhythms to microgravity was studied in four astronauts aboard the Russian space station MIR during wakefulness and sleep. Sleep polygraphies were obtained between the third and the 30th day in space and, in addition, prior to mission on the ground. From each of the sleep polygraphies, beat-to-beat intervals of cardiac rhythms were determined. The response of heart period and heart period variability to the stimulus microgravity was tested during sleep across sleep stages and during waking. A lengthening of heart period by about 100 ms was found in space compared to measurements on the ground. The slowing of heart rate was more pronounced for non-REM sleep than for REM sleep. A systematic change in heart period in relation to the duration of the stay in space could not be detected. An analysis of heart period variability in the high frequency (respiratory sinus arrhythmia) band supports the hypothesis that the decrease of heart rate under microgravity is produced by an increase in parasympathetic activity. Testing the response of cardiac rhythms to microgravity across distinct behavioural states seems to be a powerful tool to investigate the cardiovascular system.  (+info)

Dispersion of 0.5- to 2-micron aerosol in microG and hypergravity as a probe of convective inhomogeneity in the lung. (2/386)

We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (microG) and hypergravity ( approximately 1. 6 G). Boluses of 0.5-, 1-, and 2-micron-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp >500 ml). For 0.5-micron-diameter particles for which sedimentation velocity is low, the differences between dispersion in microG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between microG and 1 G.  (+info)

Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibres. (3/386)

1. Soleus biopsies were obtained from four male astronauts 45 days before and within 2 h after a 17 day spaceflight. 2. For all astronauts, single chemically skinned post-flight fibres expressing only type I myosin heavy chain (MHC) developed less average peak Ca2+ activated force (Po) during fixed-end contractions (0.78 +/- 0. 02 vs. 0.99 +/- 0.03 mN) and shortened at a greater mean velocity during unloaded contractions (Vo) (0.83 +/- 0.02 vs. 0.64 +/- 0.02 fibre lengths s-1) than pre-flight type I fibres. 3. The flight-induced decline in absolute Po was attributed to reductions in fibre diameter and/or Po per fibre cross-sectional area. Fibres from the astronaut who experienced the greatest relative loss of peak force also displayed a reduction in Ca2+ sensitivity. 4. The elevated Vo of the post-flight slow type I fibres could not be explained by alterations in myosin heavy or light chain composition. One alternative possibility is that the elevated Vo resulted from an increased myofilament lattice spacing. This hypothesis was supported by electron micrographic analysis demonstrating a reduction in thin filament density post-flight. 5. Post-flight fibres shortened at 30 % higher velocities than pre-flight fibres at external loads associated with peak power output. This increase in shortening velocity either reduced (2 astronauts) or prevented (2 astronauts) a post-flight loss in fibre absolute peak power (microN (fibre length) s-1). 6. The changes in soleus fibre diameter and function following spaceflight were similar to those observed after 17 days of bed rest. Although in-flight exercise countermeasures probably reduced the effects of microgravity, the results support the idea that ground-based bed rest can serve as a model of human spaceflight. 7. In conclusion, 17 days of spaceflight decreased force and increased shortening velocity of single Ca2+-activated muscle cells expressing type I MHC. The increase in shortening velocity greatly reduced the impact that impaired force production had on absolute peak power.  (+info)

Helium and sulfur hexafluoride bolus washin in short-term microgravity. (4/386)

We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstructed from individual bolus tests when allowance for airways closure was made. Bolus tests showed that most of the SBW phase III slope results from events during inspiration at lung volumes below closing capacity and near total lung capacity, as does the SF6-He phase III slope difference. Similarly, the difference between 1 G and microG in phase III slopes for both gases was entirely accounted for by gravity-dependent events at high and low lung volumes. Phase IV height was always larger for SF6 than for He, suggesting at least some airway closure in close proximity to airways that remain open at residual volume. These results help explain previous studies in microG, which show large changes in gas mixing in vital capacity maneuvers but only small effects in tidal volume breaths.  (+info)

Space travel directly induces skeletal muscle atrophy. (5/386)

Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.  (+info)

How cells (might) sense microgravity. (6/386)

This article is a summary of a lecture presented at an ESA/NASA Workshop on Cell and Molecular Biology Research in Space that convened in Leuven, Belgium, in June 1998. Recent studies are reviewed which suggest that cells may sense mechanical stresses, including those due to gravity, through changes in the balance of forces that are transmitted across transmembrane adhesion receptors that link the cytoskeleton to the extracellular matrix and to other cells (e.g., integrins, cadherins, selectins). The mechanism by which these mechanical signals are transduced and converted into a biochemical response appears to be based, in part, on the finding that living cells use a tension-dependent form of architecture, known as tensegrity, to organize and stabilize their cytoskeleton. Because of tensegrity, the cellular response to stress differs depending on the level of pre-stress (pre-existing tension) in the cytoskeleton and it involves all three cytoskeletal filament systems as well as nuclear scaffolds. Recent studies confirm that alterations in the cellular force balance can influence intracellular biochemistry within focal adhesion complexes that form at the site of integrin binding as well as gene expression in the nucleus. These results suggest that gravity sensation may not result from direct activation of any single gravioreceptor molecule. Instead, gravitational forces may be experienced by individual cells in the living organism as a result of stress-dependent changes in cell, tissue, or organ structure that, in turn, alter extracellular matrix mechanics, cell shape, cytoskeletal organization, or internal pre-stress in the cell-tissue matrix.--Ingber, D. How cells (might) sense microgravity.  (+info)

Regulation of growth in the adult cardiomyocytes. (7/386)

Cardiomyocytes of adult myocardium increase their cellular mass in response to growth stimuli. They undergo hypertrophic growth but they do not proliferate in contrast to immature cardiomyocytes. Growth stimuli of the adult cardiomyocytes include classical growth hormones, various neuroendocrine factors, and the increase in mechanical load. The signal transduction of alpha1-adrenoceptor stimulation has been investigated in greatest detail and may therefore be taken as a reference for other humoral stimuli. It involves the activation of protein kinase C (PKC) and, downstream of PKC activation, of two separate signaling pathways, one including the mitogen-activated protein kinase and another including PI3-kinase and p70(s6k) as key steps. Activation of the first pathway leads to re-expression of fetal genes, activation of the second pathway to a general activation of protein synthesis, and cellular growth. In neonatal cardiomyocytes, mechanical stretch causes growth by an activation of an autocrine mechanism including angiotensin II and endothelin. This mechanism does not operate, however, in adult cardiomyocytes. A mechanism of mechanotransduction has not yet been identified on adult cardiomyocytes but integrins may play a part. In microgravity, the scenario of myocardial growth stimulation is altered. On the systemic level, there are changes in hemodynamic and neuroendocrine regulation that exert indirect effects on the myocardium. Microgravity may also exert a direct cellular effect by the absence of a constant gravitational load component.  (+info)

The kinetics of translocation and cellular quantity of protein kinase C in human leukocytes are modified during spaceflight. (8/386)

Protein kinase C (PKC) is a family of serine/threonine kinases that play an important role in mediating intracellular signal transduction in eukaryotes. U937 cells were exposed to microgravity during a space shuttle flight and stimulated with a radiolabeled phorbol ester ([3H]PDBu) to both specifically label and activate translocation of PKC from the cytosol to the particulate fraction of the cell. Although significant translocation of PKC occurred at all g levels, the kinetics of translocation in flight were significantly different from those on the ground. In addition, the total quantity of [3H]PDBu binding PKC was increased in flight compared to cells at 1 g on the ground, whereas the quantity in hypergravity (1.4 g) was decreased with respect to 1 g. Similarly, in purified human peripheral blood T cells the quantity of PKCdelta varied in inverse proportion to the g level for some experimental treatments. In addition to these novel findings, the results confirm earlier studies which showed that PKC is sensitive to changes in gravitational acceleration. The mechanisms of cellular gravisensitivity are poorly understood but the demonstrated sensitivity of PKC to this stimulus provides us with a useful means of measuring the effect of altered gravity levels on early cell activation events.  (+info)