Regulated von Willebrand factor (vWf) secretion is restored by pro-vWf expression in a transfectable endothelial cell line. (1/104)

Von Willebrand factor (vWf) is a glycoprotein involved in primary hemostasis and synthesized in endothelial cells (EC). vWf is stored in secretory granules specific for EC called Weibel-Palade bodies (WPb). Studies on the molecular mechanisms of vWf storage and acute release are hampered by the limitations of the available endothelial cell culture models. We created a suitable model by stable transfection of the vWf-negative ECV304 endothelial cell line with pro-vWf cDNA. Pro-vWf was normally cleaved to mature vWf and stored in WPb. Acute vWf release occurred in response to the calcium ionophore A23187. Thus, vWf expression is sufficient to restore functional secretory granules in ECV304 cells. We used this model to study the role of WPb in the storage of tissue-type plasminogen activator (t-PA), a key fibrinolytic enzyme that is acutely released by EC, but whose intracellular storage compartment is still a matter of debate. We observed that restoration of WPb in ECV304 cells results in the targeting of t-PA to these storage granules.  (+info)

Assembly of multimeric von Willebrand factor directs sorting of P-selectin. (2/104)

We designed a model system to study the role of von Willebrand factor (vWF) in the sorting of P-selectin and the biogenesis of Weibel-Palade body (WPB)-like organelles. For that purpose, a human epithelial cell line (T24) that synthesizes P-selectin mRNA, but which is devoid of vWF mRNA synthesis and storage organelles, was transfected with full-length vWF cDNA or a deletion mutant thereof. Stable transfectants of T24 with full-length vWF cDNA revealed the generation of WPB-like organelles as demonstrated by colocalization of vWF and P-selectin with double-labeling immunofluorescence. In contrast, T24 cells transfected with vWF delD'D3 cDNA, encoding a mutant that is unable to form vWF multimers, displayed only perinuclear vWF staining, whereas no indication was found for the presence of WPB-like organelles. The contents of the organelles in full-length vWF cDNA-transfected T24 cells were released on activation of the protein kinase C pathway, similar to the situation with genuine endothelial cells. The expression of vWF did not affect the biosynthesis of P-selectin, as deduced from the observation that untransfected and vWF cDNA-transfected T24 cells contained the same amount of P-selectin mRNA. We propose that the biosynthesis of multimeric vWF directs the generation of WPB-like organelles, as evidenced by the sequestering and anchoring of P-selectin into these storage granules.  (+info)

Localization of alpha 1,3-fucosyltransferase VI in Weibel-Palade bodies of human endothelial cells. (3/104)

Surface glycosylation of endothelial cells is relevant to various processes including coagulation, inflammation, metastasis, and lymphocyte homing. One of the essential sugars involved in these processes is fucose linked alpha1-->3 to N-acetylglucosamine. A family of alpha1,3-fucosyltransferases (FucTs) called FucT-III, IV, V, VI, VII, and IX is able to catalyze such fucosylations. Reverse transcription-PCR analysis revealed that human umbilical vein endothelial cells express all of the FucTs except FucT-IX. The predominant activity, as inferred by acceptor specificity of enzyme activity in cell lysates, is compatible with the presence of FucT-VI. By using an antibody to recombinant soluble FucT-VI, the enzyme colocalized with beta4-galactosyltransferase-1 to the Golgi apparatus. By using a polyclonal antiserum raised against a 17-aa peptide of the variable (stem) region of the FucT-VI, immunocytochemical staining of FucT-VI was restricted to Weibel-Palade bodies, as determined by colocalization with P-selectin and von Willebrand factor. SDS/PAGE immunoblotting and amino acid sequencing of internal peptides confirmed the identity of the antigen isolated by the peptide-specific antibody as FucT-VI. Storage of a fucosyltransferase in Weibel-Palade bodies suggests a function independent of Golgi-associated glycosylation.  (+info)

CD39 modulates endothelial cell activation and apoptosis. (4/104)

BACKGROUND: CD39 is the dominant vascular nucleoside triphosphate diphosphohydrolase (NTPDase) that exerts major effects on platelet reactivity by the regulated hydrolysis of extracellular adenine nucleotides. The effects of NTPDases on endothelial cell (EC) activation and apoptosis remain unexplored. MATERIAL AND METHODS: Recombinant replication-deficient adenoviruses were constructed with human CD39 cDNA (rAdCD39) or the bacterial beta-galactosidase (rAdbetagal). RESULTS: Intact human umbilical vein EC cultures infected with rAdCD39 had substantial and stable increases in NTPDase biochemical activity (14.50 +/- 3.50 Pi nmole/well/min), when contrasted with noninfected cells (0.95 +/- 0.002) and rAdbetagal infected cells (1.01 +/- 0.02; p<0.005). Increased NTPDase activity efficiently inhibited immediate type 2Y purinergic receptor (P2Y)-mediated EC activation responses viz. von Willebrand factor secretion in response to extracellular ATP. In addition, CD39 up-regulation blocked ATP-induced translocation of the transcription nuclear factor (NF)-kappaB to the cell nucleus, and abrogated transcription of mRNA encoding E-selectin, and consequent protein synthesis. CD39 also decreased the extent of apoptosis triggered by putative type-2X purinergic (P2X7) receptors in response to high concentrations of extracellular ATP in vitro. CONCLUSION: These properties of CD39 indicate primary vascular protective effects with potential therapeutic applications.  (+info)

Small GTP-binding protein Ral modulates regulated exocytosis of von Willebrand factor by endothelial cells. (5/104)

Weibel-Palade bodies are endothelial cell-specific organelles, which contain von Willebrand factor (vWF), P-selectin, and several other proteins. Recently, we found that the small GTP-binding protein Ral is present in a subcellular fraction containing Weibel-Palade bodies. In the present study, we investigated whether Ral is involved in the regulated exocytosis of Weibel-Palade bodies. Activation of endothelial cells by thrombin resulted in transient cycling of Ral from its inactive GDP-bound to its active GTP-bound state, which coincided with release of vWF. Ral activation and exocytosis of Weibel-Palade bodies were inhibited by incubation with trifluoperazine, an inhibitor of calmodulin, before thrombin stimulation. Functional involvement of Ral in exocytosis was further investigated by the expression of constitutively active and dominant-negative Ral variants in primary endothelial cells. Introduction of active Ral G23V resulted in the disappearance of Weibel-Palade bodies from endothelial cells. In contrast, the expression of the dominant-negative Ral S28N did not affect the amount of Weibel-Palade bodies in transfected cells. These results indicate that Ral is involved in regulated exocytosis of Weibel-Palade bodies by endothelial cells.  (+info)

Inducible nitric oxide synthase inhibition of weibel-palade body release in cardiac transplant rejection. (6/104)

BACKGROUND: Inducible nitric oxide synthase (iNOS, or NOS2) reduces the severity of accelerated graft arteriosclerosis (AGA) in transplanted organs, although the precise mechanism is unclear. METHODS AND RESULTS: We transplanted wild-type murine hearts into either wild-type or NOS2-null recipient mice; we then measured cardiac allograft survival and analyzed tissue sections by immunohistochemistry. We have confirmed that NOS2 increases cardiac allograft survival. We now show that there is less inflammation of cardiac allografts in wild-type hosts than in NOS2-null hosts. Furthermore, staining for von Willebrand factor reveals that the presence of NOS2 is correlated with the presence of Weibel-Palade bodies inside endothelial cells, whereas the absence of NOS2 is correlated with the release of Weibel-Palade bodies. CONCLUSIONS: Weibel-Palade bodies contain mediators that promote thrombosis and inflammation. Therefore, nitric oxide (NO) may stabilize the vessel wall and prevent endothelial activation in part by inhibiting the release of the contents of Weibel-Palade bodies. Prevention of Weibel-Palade body release might be a mechanism by which NO protects the vessel wall from inflammatory disorders such as atherosclerosis or graft arteriosclerosis.  (+info)

Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. (7/104)

Vascular endothelial cells are thought to be the main source of plasma tissue-type plasminogen activator (t-PA) and von Willebrand factor (VWF). Previous studies have suggested that both t-PA and VWF are acutely released in response to the same stimuli, both in cultured endothelial cells and in vivo. However, the subcellular storage compartment in endothelial cells has not been definitively established. We tested the hypothesis that t-PA is localized in Weibel-Palade (WP) bodies, the specialized endothelial storage granules for VWF. In cultured human umbilical vein endothelial cells (HUVECs), t-PA was expressed in a minority of cells and found in WP bodies by immunofluorescence. After up-regulation of t-PA synthesis either by vascular endothelial growth factor (VEGF) and retinoic acid or by sodium butyrate, there was a large increase in t-PA-positive cells. t-PA was exclusively located to WP bodies, an observation confirmed by immunoelectron microscopy. Incubation with histamine, forskolin, and epinephrine induced the rapid, coordinate release of both t-PA and VWF, consistent with a single storage compartment. In native human skeletal muscle, t-PA was expressed in endothelial cells from arterioles and venules, along with VWF. The 2 proteins were found to be colocalized in WP bodies by immunoelectron microscopy. These data indicate that t-PA and VWF are colocalized in WP bodies, both in HUVECs and in vivo. Release of both t-PA and VWF from the same storage pool likely accounts for the coordinate increase in the plasma level of the 2 proteins in response to numerous stimuli, such as physical activity, beta-adrenergic agents, and 1-deamino-8d-arginine vasopressin (DDAVP) among others.  (+info)

Selective and signal-dependent recruitment of membrane proteins to secretory granules formed by heterologously expressed von Willebrand factor. (8/104)

von Willebrand factor (vWF) is a large, multimeric protein secreted by endothelial cells and involved in hemostasis. When expressed in AtT-20 cells, vWF leads to the de novo formation of cigar-shaped organelles similar in appearance to the Weibel-Palade bodies of endothelial cells in which vWF is normally stored before regulated secretion. The membranes of this vWF-induced organelle, termed the pseudogranule, are uncharacterized. We have examined the ability of these pseudogranules, which we show are secretagogue responsive, to recruit membrane proteins. Coexpression experiments show that the Weibel-Palade body proteins P-selectin and CD63, as well as the secretory organelle membrane proteins vesicle-associated membrane protein-2 and synaptotagmin I are diverted away from the endogenous adrenocorticotropic hormone-containing secretory granules to the vWF-containing pseudogranules. However, transferrin receptor, lysosomal-associated membrane protein 1, and sialyl transferase are not recruited. The recruitment of P-selectin is dependent on a tyrosine-based motif within its cytoplasmic domain. Our data show that vWF pseudogranules specifically recruit a subset of membrane proteins, and that in a process explicitly driven by the pseudogranule content (i.e., vWF), the active recruitment of at least one component of the pseudogranule membrane (i.e., P-selectin) is dependent on residues of P-selectin that are cytosolic and therefore unable to directly interact with vWF.  (+info)