Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. (9/740)

For many pathogenic microbes that utilize mainly asexual modes of reproduction, it is unknown whether epidemics are due to either the emergence of pathogenic clones or environmentally determined increases in the population size of the organism. Descriptions of the genetic structures of epidemic populations, in conjunction with analyses of key environmental variables, are able to distinguish between these competing hypotheses. A major epidemic of coccidioidomycosis (etiologic agent, Coccidioides immitis) occurred between 1991 and 1994 in central California, representing an 11-fold increase above the mean number of cases reported from 1955 to 1990. Molecular analyses showed extensive genetic diversity, a lack of linkage disequilibria, and little phylogenetic structure, demonstrating that a newly pathogenic strain was not responsible for the observed epidemic. Epidemiological analyses showed that morbidity caused by C. immitis was best explained by the interaction between two variables, the lengths of droughts preceding epidemics and the amounts of rainfall. This shows that the principal factors governing this epidemic of C. immitis are environmental and not genetic. An important implication of this result is that the periodicity of cyclical environmental factors regulates the population size of C. immitis and is instrumental in determining the size of epidemics. This knowledge provides an important tool for predicting outbreaks of this pathogen, as well as a general framework that may be applied to determine the causes of epidemics of other fungal diseases.  (+info)

Acute melioidosis outbreak in Western Australia. (10/740)

A cluster of acute melioidosis cases occurred in a remote, coastal community in tropical Western Australia. Molecular typing of Burkholderia pseudomallei isolates from culture-confirmed cases and suspected environmental sources by pulsed-field gel electrophoresis (PFGE) of XbaI chromosomal DNA digests showed that a single PFGE type was responsible for five cases of acute infection in a community of around 300 during a 5 week period. This temporal and geographical clustering of acute melioidosis cases provided a unique opportunity to investigate the environmental factors contributing to this disease. B. pseudomallei isolated from a domestic tap at the home of an asymptomatic seroconverter was indistinguishable by PFGE. Possible contributing environmental factors included an unusually acid communal water supply, unrecordable chlorine levels during the probable exposure period, a nearby earth tremor, and gusting winds during the installation of new water and electricity supplies. The possible role of the potable water supply as a source of B. pseudomallei was investigated further.  (+info)

Riding the Ice Age El Nino? Pacific biogeography and evolution of Metrosideros subg. Metrosideros (Myrtaceae) inferred from nuclear ribosomal DNA. (11/740)

Metrosideros subg. Metrosideros (Myrtaceae) comprises approximately 26 species distributed widely across the Pacific basin. They occur on the ancient Gondwanan landmasses of New Zealand and New Caledonia, as well as on the volcanic islands of the remote Pacific, from Melanesia to tropical Polynesia and the Bonin Island. Phylogenetic analysis based on nuclear ribosomal DNA spacer sequences from all named species showed Metrosideros umbellata of New Zealand as basal in the subgenus, with the remaining species falling into three monophyletic clades. One includes the seven New Caledonian species together with three daughters in western Oceania that probably dispersed during the mid/late Tertiary. A second contains six taxa located in east Melanesia and Samoa that may also have arisen from a mid/late Tertiary dispersal, in this instance from New Zealand. The third includes three New Zealand endemics along with all of the taxa in remote Polynesia and accounts for much of the total range of the subgenus. These dispersed taxa in Polynesia either are identical to the New Zealand species Metrosideros excelsa or differ by a single nucleotide change. We suggest that they are all derived from a Pleistocene dispersal out of New Zealand. A relatively recent dispersal is surprising, given that this wind-dispersed genus has occupied New Zealand for much of the Tertiary and that some of the islands in remote Polynesia date to at least the Miocene. We attribute this dramatic range expansion to climate change-specifically changes in wind flow patterns-in the southern hemisphere during worldwide glaciation.  (+info)

Rapid transition in the structure of a coral reef community: the effects of coral bleaching and physical disturbance. (12/740)

Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3-9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.  (+info)

Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. (13/740)

As highland regions of Africa historically have been considered free of malaria, recent epidemics in these areas have raised concerns that high elevation malaria transmission may be increasing. Hypotheses about the reasons for this include changes in climate, land use and demographic patterns. We investigated the effect of land use change on malaria transmission in the south-western highlands of Uganda. From December 1997 to July 1998, we compared mosquito density, biting rates, sporozoite rates and entomological inoculation rates between 8 villages located along natural papyrus swamps and 8 villages located along swamps that have been drained and cultivated. Since vegetation changes affect evapotranspiration patterns and, thus, local climate, we also investigated differences in temperature, humidity and saturation deficit between natural and cultivated swamps. We found that on average all malaria indices were higher near cultivated swamps, although differences between cultivated and natural swamps were not statistically significant. However, maximum and minimum temperature were significantly higher in communities bordering cultivated swamps. In multivariate analysis using a generalized estimating equation approach to Poisson regression, the average minimum temperature of a village was significantly associated with the number of Anopheles gambiae s.l. per house after adjustment for potential confounding variables. It appears that replacement of natural swamp vegetation with agricultural crops has led to increased temperatures, which may be responsible for elevated malaria transmission risk in cultivated areas.  (+info)

Outbreak of hantavirus infection in the Four Corners region of the United States in the wake of the 1997-1998 El Nino-southern oscillation. (14/740)

Hantavirus cardiopulmonary syndrome (HCPS), a rodent-borne zoonosis, has been endemic in the Americas for at least several decades. It is hypothesized that the 1991-1992 El Nino-southern oscillation (ENSO) caused increased precipitation that allowed an increase in rodent population densities, thereby increasing the possibility of transmission to humans. The result was a 1993-1994 outbreak of the disease in the Four Corners states of the southwestern United States. A second strong ENSO occurred in 1997-1998, after a period of considerable public education about the risks of hantavirus infection that began during the 1993-1994 outbreak. The caseload of HCPS increased 5-fold above baseline in the Four Corners states in 1998-1999. Regions that had received increased rainfall in 1998 were especially affected. A large majority of the 1998-1999 case patients reported indoor exposure to deer mice. Hantavirus outbreaks can occur in response to abiotic events, even in the face of extensive public education and awareness.  (+info)

Impacts of a global climate cycle on population dynamics of a migratory songbird. (15/740)

Progress toward understanding factors that limit abundances of migratory birds, including climate change, has been difficult because these species move between diverse locations, often on different continents. For black-throated blue warblers (Dendroica caerulescens), demographic rates in both tropical winter quarters and north temperate breeding grounds varied with fluctuations in the El Nino Southern Oscillation. Adult survival and fecundity were lower in El Nino years and higher in La Nina years. Fecundity, in turn, was positively correlated with subsequent recruitment of new individuals into winter and breeding populations. These findings demonstrate that migratory birds can be affected by shifts in global climate patterns and emphasize the need to know how events throughout the annual cycle interact to determine population size.  (+info)

Heat-related illnesses, deaths, and risk factors--Cincinnati and Dayton, Ohio, 1999, and United States, 1979-1997. (16/740)

During the summer of 1999, a heat wave occurred in the midwestern and eastern United States. This period of hot and humid weather persisted from July 12 through August 1, 1999, and caused or contributed to 22 deaths among persons residing in Cincinnati (18 deaths) and Dayton (four deaths). A CDC survey of 24 U.S. metropolitan areas indicated that Ohio recorded some of the highest rates for heat-related deaths during the 1999 heat wave, with Cincinnati reporting 21 per million and Dayton reporting seven per million (CDC, unpublished data, 1999). This report describes four heat-related deaths representative of those that occurred in Cincinnati or Dayton during the 1999 heat wave, summarizes heat-related deaths in the United States during 1979-1997, describes risk factors associated with heat-related illness and death, and recommends preventive measures.  (+info)