Quantitative analysis of fatty acid precursors in marine samples: direct conversion of wax ester alcohols and dimethylacetals to FAMEs. (41/329)

To apply fatty acid analyses to the study of foraging ecology and diet determination, all compounds that may be deposited as fatty acids in a predator must be quantified in the prey. These compounds include the usual fatty acids in acyl lipids, but also the alcohols of wax esters and the vinyl ethers of plasmalogens. In routine fatty acid analysis, samples are extracted and transesterified (methylated), resulting in the formation of fatty acid methyl esters (FAMEs); however, fatty alcohols and dimethylacetals (DMAs) are also generated if wax esters or plasmalogens are present. Here, we present a new method using a modified Jones' reagent to oxidize these alcohols and DMAs to free fatty acids (FFAs). These FFAs are then easily methylated and quantitatively recombined with FAMEs from the same sample. This generates a fatty acid signature of prey that is equivalent to that which the predator has available for deposition upon digestion of that prey. This method is validated with alcohol and DMA standards. Its application to typical marine samples is also presented, demonstrating the change in effective fatty acid signature after inclusion of fatty acids derived from wax esters and plasmalogens.  (+info)

Production of a polyunsaturated isoprenoid wax ester during aerobic metabolism of squalene by Marinobacter squalenivorans sp. nov. (42/329)

This paper describes the production of 5,9,13-trimethyltetradeca-4E,8E,12-trienyl-5,9,13-trimethyltetradeca-4E,8E,12-tri enoate during the aerobic degradation of squalene by a Marinobacter strain, 2Asq64, isolated from the marine environment. A pathway involving initial cleavage of the C(10)-C(11) or C(14)-C(15) double bonds of the squalene molecule is proposed to explain the formation of this polyunsaturated isoprenoid wax ester. The isoprenoid wax ester content reached 1.1% of the degraded squalene at the mid-exponential growth phase and then decreased during the stationary phase. The wax ester content increased by approximately threefold in N-limited cultures, in which the ammonium concentration corresponds to conditions often found in marine sediments. This suggests that the bacterial formation of isoprenoid wax esters might be favored in such environments. The bacterial strain is then characterized as a member of a new species, for which we propose the name Marinobacter squalenivorans sp. nov.  (+info)

Release from or through a wax matrix system. V. Applicability of the square-root time law equation for release from a wax matrix tablet. (43/329)

To obtain basic and clear release properties, wax matrix tablets were prepared from a physical mixture of drug and wax powder at a fixed mixing ratio. Properties of release from the single flat-faced surface, curved side surface, and/or whole surface of the wax matrix tablet were examined. Then tortuosity and the applicability of Higuchi's square-root time law equation were examined. The Higuchi equation well analyzed the release processes of different release manners. However, the region fitted to the Higuchi equation differed with the release manner. Tortuosity obtained with release from the single flat-faced surface and curved side surface was comparable with that obtained with the release from a reservoir device tablet, whereas tortuosity obtained with release from the whole surface was larger. As the wax matrix tablets were prepared at a fixed mixing ratio, their internal structures should be similar. Therefore changes in the matrix volume or volume fraction with release were examined, and an extra volume where dissolved drug stray becomes large with release time in the case of release from the whole surface. These factors should be taken into account for evaluation of applicability and release properties. Furthermore, the entire release process should be analyzed using a combination of the square-root time law and other suitable equations in accordance with release manner or condition.  (+info)

Diffusion of a freely water-soluble drug in aqueous enteric-coated pellets. (44/329)

The effects of filler used in the pellet cores (ie, waxy cornstarch or lactose) and the enteric film coat thickness on the diffusion and dissolution of a freely soluble drug were studied. Two kinds of pellet cores containing riboflavin sodium phosphate as a model drug, microcrystalline cellulose (MCC) as a basic filler, and waxy cornstarch or lactose as a cofiller were film coated (theoretically weight increase 20% or 30%) with an aqueous dispersion of cellulose acetate phthalate (CAP). The diffusion of riboflavin sodium phosphate in aqueous enteric-coated pellets was investigated using noninvasive confocal laser scanning microscopy (CLSM). The in vitro release tests were performed using a USP apparatus I (basket method). Diffusion of drug from the core to the film coat was found to be greater with lactose-containing pellets than with waxy cornstarch-containing pellets. The dissolution test showed that 30% enteric-coated waxy cornstarch pellets had a good acidic resistance in 0.1 N HCl solution for at least 1 hour, while the other enteric pellet formulations failed the test. The waxy cornstarch-containing enteric pellets dissolved at SIF in less than 10 minutes. Confocal images of film-coated pellets showed that waxy cornstarch-containing pellets had less drug dissolved than respective lactose-containing pellets. The observations were further confirmed by measurement of fluorescence intensity of riboflavin sodium phosphate in the film coat. The dissolution test was consistent with the confocal microscopy results. In conclusion, waxy cornstarch as a cofiller in the pellet cores minimizes premature drug diffusion from the core into the film coat layer.  (+info)

MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES. (45/329)

When n-alkanes with 13 to 20 carbon atoms were fed to a Nocardia closely related to N. salmonicolor, the produced cellular triglycerides and aliphatic waxes invariably contained fatty acids with an even or an odd number of carbon atoms subject to this feature of the n-alkane substrate. Beta-oxidation and C(2) addition are both operative, as evidenced by the spectra of fatty acids incorporated into the cellular lipid components. There is no distinction in the rate of microbial incorporation of the odd-or even-numbered carbon chains. The fatty acids are apparently directly derived from the long chain n-alkanes, rather than synthesized via the classic C(2)-condensation route. The alcohol component of waxes produced by the Nocardia is invariably of the same chain length as the n-alkane substrate.  (+info)

Independence of circadian entrainment state and responses to melatonin in male Siberian hamsters. (46/329)

BACKGROUND: Seasonal fluctuations in physiology and behavior depend on the duration of nocturnal melatonin secretion programmed by the circadian system. A melatonin signal of a given duration, however, can elicit different responses depending on whether an animal was previously exposed to longer or shorter photoperiod signals (i.e., its photoperiodic history). This report examined in male Siberian hamsters which of two aspects of photoperiod history--prior melatonin exposure or entrainment state of the circadian system - is critical for generating contingent responses to a common photoperiodic signal. RESULTS: In Experiment #1, daily melatonin infusions of 5 or 10 h duration stimulated or inhibited gonadal growth, respectively, but had no effect on entrainment of the locomotor activity rhythm to long or short daylengths, thereby demonstrating that melatonin history and entrainment status could be experimentally dissociated. These manipulations were repeated in Experiment #2, and animals were subsequently exposed to a 12 week regimen of naturalistic melatonin signals shown in previous experiments to reveal photoperiodic history effects. Gonadal responses differed as a function of prior melatonin exposure but were unaffected by the circadian entrainment state. Experiment #3 demonstrated that a new photoperiodic history could be imparted during four weeks of exposure to long photoperiods. This effect, moreover, was blocked in animals treated concurrently with constant release melatonin capsules that obscured the endogenous melatonin signal: Following removal of the implants, the gonadal response depended not on the immediately antecedent circadian entrainment state, but on the more remote photoperiodic conditions prior to the melatonin implant. CONCLUSIONS: The interpretation of photoperiodic signals as a function of prior conditions depends specifically on the history of melatonin exposure. The photoperiodic regulation of circadian entrainment state contributes minimally to the interpretation of melatonin signals.  (+info)

The uropygiols: identification of the unsaponifiable constituent of a diester wax from chicken preen glands. (47/329)

The chief lipid fraction in the uropygial gland excretion of the domestic hen is a diester wax. The saponifiable fraction of this wax consists of saturated normal C(10)-C(20) fatty acids. The unsaponifiable fraction consists of a series of three homologous compounds, which have been named the uropygiols and identified by mass spectrometry, gas-liquid chromatography, and periodate cleavage as 2,3-n-alkanediols containing 22-24 carbon atoms. The native diols were shown to consist of about equal amounts of the threo and erythro isomers. Records of analyses of the natural products as well as related synthetic compounds are shown.  (+info)

Optimum heat treatment conditions for masking the bitterness of the clarithromycin wax matrix. (48/329)

The effects of the contents of aminoalkyl methacrylate copolymer E (AMCE) in a wax matrix on the mechanism of polymorphic transformation of glyceryl monostearate (GM) were clarified by evaluating the enthalpy change defined as 1.51 (DeltaH(1)-DeltaH(2))/DeltaH(2), where DeltaH(1) and DeltaH(2) denote the enthalpies in the first and second thermal analyses, respectively. Using this value, K(1), the rate constant of transformation from alpha-form to beta'-form, and K(2), the rate constant of transformation from beta'-form to beta-form, could be obtained. As the ratio of AMCE increased, K(2) increased, but a minimum point existed for K(1). K(1) was always larger than K(2), but gradually approached K(2) as the ratio of AMCE increased. The optimum temperature for the transformation of GM was 50 degrees C, at which the enthalpy change was maximum. To prepare the wax matrix preparation of clarithromycin (CAM), we considered 40 degrees C the optimum treatment temperature for the transformation of GM in a CAM wax matrix compounded from CAM, GM and AMCE, since the matrices were mutually welded at above 45 degrees C during the spray congealing process. Although K(1) and K(2) were almost the same at 40 degrees C, the rate of transformation was accelerated by tumbling. By applying the tumbling that accelerated the transformation of GM in a CAM wax matrix, almost all of the alpha-form disappeared, and the release of CAM from the wax matrix diminished when the enthalpy change was more than 0.8.  (+info)