Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. (65/715)

Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms.  (+info)

Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. (66/715)

Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OP10 (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92% of the Q sludge bacteria and 28% of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two full-scale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.  (+info)

Modifications to United States Environmental Protection Agency methods 1622 and 1623 for detection of Cryptosporidium oocysts and Giardia cysts in water. (67/715)

Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  (+info)

Molecular characterization of Legionella populations present within slow sand filters used for fungal plant pathogen suppression in horticultural crops. (68/715)

The total bacterial community of an experimental slow sand filter (SSF) was analyzed by denaturing gradient gel electrophoresis (DGGE) of partial 16S rRNA gene PCR products. One dominant band had sequence homology to Legionella species, indicating that these bacteria were a large component of the SSF bacterial community. Populations within experimental and commercial SSF units were studied by using Legionella-specific PCR primers, and products were studied by DGGE and quantitative PCR analyses. In the experimental SSF unit, the DGGE profiles for sand column, reservoir, storage tank, and headwater tank samples each contained at least one intense band, indicating that a single Legionella strain was predominant in each sample. Greater numbers of DGGE bands of equal intensity were detected in the outflow water sample. Sequence analysis of these PCR products showed that several Legionella species were present and that the organisms exhibited similarity to strains isolated from environmental and clinical samples. Quantitative PCR analysis of the SSF samples showed that from the headwater sample through the sand column, the number of Legionella cells decreased, resulting in a lower number of cells in the outflow water. In the commercial SSF, legionellae were also detected in the sand column samples. Storing prefilter water or locating SSF units within greenhouses, which are often maintained at temperatures that are higher than the ambient temperature, increases the risk of growth of Legionella and should be avoided. Care should also be taken when used filter sand is handled or replaced, and regular monitoring of outflow water would be useful, especially if the water is used for misting or overhead irrigation.  (+info)

Urinary levels of trichloroacetic acid, a disinfection by-product in chlorinated drinking water, in a human reference population. (69/715)

Trichloroacetic acid (TCAA), a known mouse liver carcinogen and a possible human carcinogen, is found in chlorinated drinking water. We measured TCAA in archived urine samples from a reference population of 402 adults using isotope-dilution high-performance liquid chromatography-tandem mass spectrometry. TCAA was detected in 76% of the samples examined at concentrations ranging from < 0.5 micro g TCAA/L to more than 25 micro g/L; the 90th percentile concentration was 23 micro g/L (22 micro g TCAA/g creatinine); and the geometric mean and median concentrations were 2.9 micro g/L (2.6 micro g/g creatinine) and 3.3 micro g/L (3.2 micro g/g creatinine), respectively. The frequency of detection of TCAA in urban areas was higher than in rural areas (p = 0.00007), and sex and place of residence (i.e., urban vs. rural) were found to have a significant interaction in modulating the levels of TCAA (p = 0.012). Urban residents had higher mean levels of TCAA (men, 5.3 micro g/L, 3.8 micro g/g creatinine; women, 2.9 micro g/L, 2.8 micro g/g creatinine) than did rural residents (men, 2.2 micro g/L, 1.7 micro g/g creatinine; women, 2.6 micro g/L, 2.7 micro g/g creatinine). The higher frequency of detection of TCAA in urban than in rural areas and higher levels of TCAA among urban than among rural residents may reflect the fact that urban residents use primarily chlorinated water from public water supplies, whereas those in rural areas are more likely to obtain water from private wells, which typically are not chlorinated.  (+info)

Waterborne biofilms and dentistry: the changing face of infection control. (70/715)

Interest in and concern about the biofilms that occur in dental equipment and waterlines have been increasing in recent years. Dental unit waterlines are ideal environments for the growth of microorganisms entering dental units from the municipal water supply. This article describes the conditions in waterline tubing that favour development of biofilms and discusses the level of risk that such microbial growth poses for both dental professionals and their patients. It is stressed that very few cases of infection have been linked directly to contamination in dental unit waterlines. Finally, potential solutions for minimizing risks are presented and discussed.  (+info)

Meta-analysis of studies on individual consumption of chlorinated drinking water and bladder cancer. (71/715)

STUDY OBJECTIVE: To evaluate whether consumption of chlorinated drinking water is associated with bladder cancer. DESIGN: A bibliographic search was conducted and the authors selected studies evaluating individual consumption of chlorinated drinking water and bladder cancer. The authors extracted from each study risk estimates for intermediate and long term (>40 years) consumption of chlorinated water, stratified by sex when possible, and performed meta-analysis for the two exposure levels. A meta-analysis was also performed of the dose-response regression slopes. SETTING: Populations in Europe and North America. PARTICIPANTS: Those included in six case-control studies (6084 incident bladder cancer cases, 10,816 controls) and two cohort studies (124 incident bladder cancer cases) fulfilling the inclusion criteria. MAIN RESULTS: Ever consumption of chlorinated drinking water was associated with an increased risk of bladder cancer in men (combined OR=1.4, 95%CI 1.1 to 1.9) and women (combined OR=1.2, 95%CI 0.7 to 1.8). The combined OR for mid-term exposure in both genders was 1.1 (95% CI 1.0 to 1.2) and for long term exposure was 1.4 (95%CI 1.2 to 1.7). The combined estimate of the slope for a linear increase in risk was 1.13 (95% CI 1.08 to 1.20) for 20 years and 1.27 (95% CI 1.15 to 1.43) for 40 years of exposure in both sexes. CONCLUSIONS: This meta-analysis of the best available epidemiological evidence indicates that long term consumption of chlorinated drinking water is associated with bladder cancer, particularly in men. The observed relative risk is only moderately high, but the population attributable risk could be important as the vast majority of the population of industrialised countries is potentially exposed to chlorination byproducts for long time periods.  (+info)

Description of trihalomethane levels in three UK water suppliers. (72/715)

Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.  (+info)