Effect of growth conditions and staining procedure upon the subsurface transport and attachment behaviors of a groundwater protist. (33/308)

The transport and attachment behaviors of Spumella guttula (Kent), a nanoflagellate (protist) found in contaminated and uncontaminated aquifer sediments in Cape Cod, Mass., were assessed in flowthrough and static columns and in a field injection-and-recovery transport experiment involving an array of multilevel samplers. Transport of S. guttula harvested from low-nutrient (10 mg of dissolved organic carbon per liter), slightly acidic, granular (porous) growth media was compared to earlier observations involving nanoflagellates grown in a traditional high-nutrient liquid broth. In contrast to the highly retarded (retardation factor of approximately 3) subsurface transport previously reported for S. guttula, the peak concentration of porous-medium-grown S. guttula traveled concomitantly with that of a conservative (bromide) tracer. About one-third of the porous-medium-grown nanoflagellates added to the aquifer were transported at least 2.8 m downgradient, compared to only approximately 2% of the broth-grown nanoflagellates. Flowthrough column studies revealed that a vital (hydroethidine [HE]) staining procedure resulted in considerably less attachment (more transport) of S. guttula in aquifer sediments than did a staining-and-fixation procedure involving 4',6'-diamidino-2-phenylindole (DAPI) and glutaraldehyde. The calculated collision efficiency (approximately 10(-2) for porous-medium-grown, DAPI-stained nanoflagellates) was comparable to that observed earlier for the indigenous community of unattached groundwater bacteria that serve as prey. The attachment of HE-labeled S. guttula onto aquifer sediment grains was independent of pH (over the range from pH 3 to 9) suggesting a primary attachment mechanism that may be fundamentally different from that of their prey bacteria, which exhibit sharp decreases in fractional attachment with increasing pH. The high degree of mobility of S. guttula in the aquifer sediments has important ecological implications for the protistan community within the temporally changing plume of organic contaminants in the Cape Cod aquifer.  (+info)

Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. (34/308)

Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader.  (+info)

Biological gradient between long-term arsenic exposure and carotid atherosclerosis. (35/308)

BACKGROUND: Long-term exposure to ingested arsenic has been documented to induce peripheral vascular disease, ischemic heart disease, and cerebral infarction in a dose-response relationship. This study further examined the biological gradient between ingested inorganic arsenic and carotid atherosclerosis. METHODS AND RESULTS: We studied 199 male and 264 female adult residents from the southwestern area of endemic arseniasis in Taiwan. The extent of carotid atherosclerosis was assessed by duplex ultrasonography. Diabetes mellitus was determined by oral glucose tolerance test, hypertension by mercury sphygmomanometers, and serum lipid profiles by autoanalyzers. Information regarding the consumption of high-arsenic artesian well water, cigarette smoking, and alcohol consumption was obtained through standardized questionnaire interviews. Logistic regression analysis was used to estimate the odds ratio and its 95% CI of carotid atherosclerosis for various risk factors. Three indices of long-term exposure to ingested arsenic, including the duration of consuming artesian well water, the average arsenic concentration in consumed artesian well water, and cumulative arsenic exposure, were all significantly associated with prevalence of carotid atherosclerosis in a dose-response relationship. The biological gradient remained significant after adjustment for age, sex, hypertension, diabetes mellitus, cigarette smoking, alcohol consumption, waist-to-hip ratio, and serum levels of total cholesterol and LDL cholesterol. The multivariate-adjusted odds ratio was 3.1 (95% CI 1.3 to 7.4) for those who had a cumulative arsenic exposure of > or =20 mg/L-years compared with those without exposure to arsenic from drinking artesian well water. CONCLUSIONS: Carotid atherosclerosis is associated with ingested inorganic arsenic, showing a significant biological gradient.  (+info)

Effluents from a pulp and paper mill: a skin and health survey of children living in upstream and downstream villages. (36/308)

OBJECTIVES: A health survey of three villages (upstream village Rantau Baru and two downstream villages, Sering and Pelalawan) in the vicinity of a pulp and paper mill along the Kampar river in the province of Riau, Indonesia was conducted to find whether exposure to the effluents from the mill was related to skin conditions and ill health. METHODS: A cross sectional survey was carried out of children living in the three villages. RESULTS: Common skin conditions such as dermatitis, fungal infections, insect bites, and miliaria were found. No significantly increased risk of dermatitis or any illness in general was found with increasing levels of exposure to river water for downstream villages when compared with the upstream village. However, there was an increased risk of diarrhoea in Sering especially with drinking water directly from the river (prevalence rate ratio (PRR) 4.9, 95% confidence interval (95% CI) 0.4 to 63.9). An increased risk was also found within the upstream village Rantau Baru (PRR 2.3, 95% CI 0.9 to 5.8) and downstream village Sering (PRR 1.4, 95% CI 0.4 to 5.2) when children who drank water directly from the river were compared with those who never did. Analysis of the river water also showed physical and chemical variables within the acceptable range except for faecal coliforms (6 MPN/100 ml) found in the sample taken from Sering. CONCLUSIONS: The effluent from the mill is unlikely to be causing skin conditions and ill health. Diarrhoea may be due to faecal coliform contamination of the water because all raw sewerage is deposited in the river. Community health outreach programmes are being implemented based on these findings.  (+info)

Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. (37/308)

Fluorescence in situ hybridization has shown that cells labeled with an Archaea-specific probe (ARCH915) accounted for approximately 10% of the total cell count in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Although chemical analyses have revealed vigorous consumption of nitrate in cavity groundwater, the present study found that the methane production rate was higher than the nitrate consumption rate. To characterize the likely archaeal populations responsible for methane production in this system, fragments of 16S ribosomal DNA (rDNA) were amplified by PCR using eight different combinations of universal and Archaea-specific primers. Sequence analysis of 324 clones produced 23 different archaeal sequence types, all of which were affiliated with the kingdom EURYARCHAEOTA: Among them, five sequence types (KuA1, KuA6, KuA12, KuA16, and KuA22) were obtained in abundance. KuA1 and KuA6 were closely related to the known methanogens Methanosaeta concilii (99% identical) and Methanomethylovorans hollandica (98%), respectively. Although no closely related organism was found for KuA12, it could be affiliated with the family METHANOMICROBIACEAE: KuA16 and KuA22 showed substantial homology only to some environmental clones. Both of these branched deeply in the Euryarchaeota, and may represent novel orders. Quantitative competitive PCR showed that KuA12 was the most abundant, accounting for approximately 50% of the total archaeal rDNA copies detected. KuA1 and KuA16 also constituted significant proportions of the total archaeal rDNA copies (7 and 17%, respectively). These results suggest that limited species of novel archaea were enriched in the oil storage cavity. An estimate of specific methane production rates suggests that they were active methanogens.  (+info)

Effects of mercury on antioxidant mechanisms in the marine phanerogam Posidonia oceanica. (38/308)

Biochemical markers of oxidative stress such as catalase activity, glutathione S-transferase (GST) activity and levels of lipid peroxidation evaluated in terms of thiobarbituric acid reactive substances (TBARS) were measured in the sheaths of the marine phanerogam Posidonia oceanica (L.) Delile experimentally exposed to 0.01, 0.1 and 1 microgHg l(-1) for 48 h. Up to a threshold concentration of 0.1 microg Hg l(-1), an increase in catalase and GST activities and TBARS levels was observed, indicating that the antioxidant mechanisms were overtaxed and could not prevent membrane lipid peroxidation. Paradoxically, at 1 microg Hg l(-1), the damage seemed to decrease, as the lipid peroxidation levels of exposed sheaths were lower than those of controls and as catalase and GST activities were not different from those of controls. A possible rapid induction of phytochelatins detoxifying mercury could occur at this high level of mercury.  (+info)

The weight of wastes generated by removal of dental amalgam restorations and the concentration of mercury in dental wastewater. (39/308)

OBJECTIVE: To determine the amount of amalgam entering the waste stream during removal of dental amalgam restorations. METHODS: Dental amalgam restorations were removed from anatomic replica teeth and natural teeth by means of a tungsten carbide bur, a high-speed handpiece and a conventional suction system. The weight of amalgam particles trapped in the primary and secondary solids separators was determined. Amalgam particles were filtered from wastewater with 15-microm filter paper and weighed. The concentration of total mercury in the effluent collected (by instantaneous flow-through) during the removal of amalgams, with and without an ISO-certified separator, was measured by means of cold-vapour atomic absorption spectrophotometry. RESULTS: About 60% by weight of the amalgam removed was found in the effluent, about a third was retained in the primary solids separator and less than 10% was retained in the secondary solids separator. The ISO-compliant separator reduced the concentration of mercury in the instantaneous flow-through discharge by 99.4%, from 31.2973 mg/L to 0.1800 mg/L. CONCLUSIONS: About 60% of the waste generated during the removal of amalgams escaped the primary and secondary solids collectors and was released into the wastewater. An ISO-certified amalgam particle separator was effective in removing the amalgam from the wastewater.  (+info)

Chromium(III) determination with 1,5-diphenylcarbazide based on the oxidative effect of chlorine radicals generated from CCl4 sonolysis in aqueous solution. (40/308)

Oxidation of Cr(III) during sonication in carbonated aqueous solutions saturated with CCl4 leads to the quantitative formation of Cr(VI) and provides a simple and rapid method for spectrophotometric chromium determination with 1,5-diphenylcarbazide. The key to this method is the production of chlorine radicals when aqueous solution saturated with CCl4 is exposed to ultrasonic waves of 40 kHz. The effects of sonication period, CCl4 solution volume, acidity, and interferences were discussed. The time required for a single determination is lower than 2 min. The relative standard deviation obtained for aqueous solutions with 1 microg of Cr was < 2% (N = 10) and the calculated detection limit (3sigma) was 5 ng of Cr.  (+info)