Specific p53 gene mutations in urinary bladder epithelium after the Chernobyl accident. (1/66)

After the Chernobyl accident, the incidence of urinary bladder cancers in the Ukraine population increased gradually from 26.2 to 36.1 per 100,000 between 1986 and 1996. Urinary bladder epithelium biopsied from 45 male patients with benign prostatic hyperplasia living in radiocontaminated areas of Ukraine demonstrated frequent severe urothelial dysplasia, carcinoma in situ, and a single invasive transitional cell carcinoma, combined with irradiation cystitis in 42 cases (93%). No neoplastic changes (carcinoma in situ or transitional cell carcinoma) were found in 10 patients from clean areas (areas without radiocontamination). DNA was extracted from the altered urothelium of selected paraffin-embedded specimens that showed obviously abnormal histology (3 cases) or intense p53 immunoreactivity (15 cases), and mutational analysis of exons 5-8 of the p53 gene was performed by PCR-single-strand conformational polymorphism analysis followed by DNA sequencing. Nine of 17 patients (53%) had one or more mutations in the altered urothelium. Urine sediment samples were also collected from the patients at 4-27 months after biopsy and analyzed by PCR-single-strand conformational polymorphism analysis or yeast functional assay, and identical or additional p53 mutations were found in four of five cases. Interestingly, a relative hot spot at codon 245 was found in five of nine (56%) cases with mutations, and 11 of the 13 mutations determined (73%) were G:C to A:T transitions at CpG dinucleotides, reported to be relatively infrequent (approximately 18%) in human urinary bladder cancers. Therefore, the frequent and specific p53 mutations found in these male patients may alert us to a future elevated occurrence of urinary bladder cancers in the radiocontaminated areas.  (+info)

Biodosimetry results obtained by various cytogenetic methods and electron spin resonance spectrometry among inhabitants of a radionuclide contaminated area around the siberian chemical plant (Tomsk-7). (2/66)

On April 6, 1993, near the town of Tomsk (Russia) there was an accident at the Siberian Chemical Plant (SCP) which resulted in extensive contamination of an area of 250 km(2) to the north of SCP with long-lived radionuclides such as (239)Pu, (137)Cs and (90)Sr. Cytogenetic methods and electron spin resonance (ESR) spectrometry of tooth enamel were used to estimate the radiation doses received by the population. The ESR signal intensity and the chromosomal aberration frequency in lymphocytes of the tooth donors showed a good correlation. The data showed that 15% of the inhabitants of the Samus settlement received a radiation dose >90 cGy. The exceptions were results of an examination of fishermen, where ESR gave high values (80-210 cGy) but both the chromosome assay and the cytokinesis block micronucleus method gave lower ones (8-52 cGy). A large increase in chromosome damage was observed in people born between 1961 and 1969. It was found that during these years several serious accidents at the Siberian Chemical Plant had occurred causing radiation pollution of the area. The number of cells with chromosome aberrations was significantly less among the people arriving in Samus after 1980. We found good correlations between the level of carotene consumption and a decrease in frequency of both micronuclei in binucleated lymphocytes (r = 0.68, P < 0.01) and chromatid aberrations (r = 0.61, P < 0.01) among the inhabitants. We also examined the inhabitants of Samus for opisthorchis infection, which was present in 30% of the population. The Samus inhabitants affected by Opisthorchis felineus showed significantly increased levels of micronuclei in binucleated lymphocytes and chromatid aberrations as compared with the controls.  (+info)

Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. (3/66)

To help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing (99)Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O(4)(-)] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H(2) served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0. 85% NaCl and with extracellular particulates (0.2 to 0.001 microm) in bicarbonate buffer. Cell-associated Tc was present principally in the periplasm and outside the outer membrane. The reduction rate was much lower when lactate was the electron donor, with extracellular Tc(IV) hydrous oxide the dominant solid-phase reduction product, but in bicarbonate systems much less Tc(IV) was associated directly with the cell and solid-phase Tc(IV) carbonate may have been present. In the presence of carbonate, soluble (<0.001 microm) electronegative, Tc(IV) carbonate complexes were also formed that exceeded Tc(VII)O(4)(-) in electrophoretic mobility. Thermodynamic calculations indicate that the dominant reduced Tc species identified in the experiments would be stable over a range of E(h) and pH conditions typical of natural waters. Thus, carbonate complexes may represent an important pathway for Tc transport in anaerobic subsurface environments, where it has generally been assumed that Tc mobility is controlled by low-solubility Tc(IV) hydrous oxide and adsorptive, aqueous Tc(IV) hydrolysis products.  (+info)

Beverages: bottled water. Direct final rule. (4/66)

The Food and Drug Administration (FDA) is amending its bottled water quality standard regulations by establishing an allowable level for the contaminant uranium. As a consequence, bottled water manufacturers are required to monitor their finished bottled water products for uranium at least once each year under the current good manufacturing practice (CGMP) regulations for bottled water. Bottled water manufacturers are also required to monitor their source water for uranium as often as necessary, but at least once every 4 years unless they meet the criteria for the source water monitoring exemptions under the CGMP regulations. FDA will retain the existing allowable levels for combined radium-226/-228, gross alpha particle radioactivity, and beta particle and photon radioactivity. This direct final rule will ensure that the minimum quality of bottled water, as affected by uranium, combined radium-226/-228, gross alpha particle radioactivity, and beta particle and photon radioactivity, remains comparable with the quality of public drinking water that meets the Environmental Protection Agency's (EPA's) standards. FDA is issuing a direct final rule for this action because the agency expects that there will be no significant adverse comment on this rule. Elsewhere in this issue of the Federal Register, FDA is publishing a companion proposed, rule under the agency's usual procedure for notice-and-comment rulemaking, to provide a procedural framework to finalize the rule in the event the agency receives any significant adverse comments and withdraws this direct final rule. The companion proposed rule and direct final rule are substantively identical.  (+info)

Recent levels of technetium-99 in seawater at the west coast of Svalbard. (5/66)

Seawater from the western coast of Svalbard was sampled in the spring and summer of 2000 to determine levels of technetium-99 (99Tc), a conservative-behaving, manmade radionuclide originating from European nuclear reprocessing plants. This paper deals with the recent levels of this radionuclide in seawater and with the link between an Arctic fjord, Kongsfjorden, and the Western Spitsbergen Current (WSC), investigated using 99Tc results. By means of the WSC, the 99Tc radionuclides ultimately reach the eastern Fram Strait west of Spitsbergen (the largest island of the Svalbard archipelago). Results from oceanographic modelling and sea ice observations indicate a direct coupling between Kongsfjorden and the area west of it. The findings in connection with new radionuclide results presented in this paper concur with these assumptions. Furthermore they indicate that the inner part of Kongsfjorden is also well linked to the WSC. Surface seawater from the central part of the WSC, sampled during a cruise with RV Polarstern in the summer of 2000, shows a higher level of 99Tc than those measured in Kongsfjorden in spring 2000. However, all levels measured in surface water are of the same order of magnitude. Data from sampling of deeper water in the WSC area provide information pertaining to the lateral distribution of 99Tc. The results, along with additional data from spring 2001, indicate that Kongsfjorden is suitable for monitoring the levels of 99Tc arriving in the European Arctic and that the sheltered setting of this fjord does not necessarily provide protection against pollution from the open sea.  (+info)

Modeling possible cooling-water intake system impacts on Ohio River fish populations. (6/66)

To assess the possible impacts caused by cooling-water intake system entrainment and impingement losses, populations of six target fish species near power plants on the Ohio River were modeled. A Leslie matrix model was constructed to allow an evaluation of bluegill, freshwater drum, emerald shiner, gizzard shad, sauger, and white bass populations within five river pools. Site-specific information on fish abundance and length-frequency distribution was obtained from long-term Ohio River Ecological Research Program and Ohio River Sanitation Commission (ORSANCO) electrofishing monitoring programs. Entrainment and impingement data were obtained from 316(b) demonstrations previously completed at eight Ohio River power plants. The model was first run under a scenario representative of current conditions, which included fish losses due to entrainment and impingement. The model was then rerun with these losses added back into the populations, representative of what would happen if all entrainment and impingement losses were eliminated. The model was run to represent a 50-year time period, which is a typical life span for an Ohio River coal-fired power plant. Percent changes between populations modeled with and without entrainment and impingement losses in each pool were compared to the mean interannual coefficient of variation (CV), a measure of normal fish population variability. In 6 of the 22 scenarios of fish species and river pools that were evaluated (6 species x 5 river pools, minus 8 species/river pool combinations that could not be evaluated due to insufficient fish data), the projected fish population change was greater than the expected variability of the existing fish population, indicating a possible adverse environmental impact. Given the number of other variables affecting fish populations and the conservative modeling approach, which assumed 100% mortality for all entrained fish and eggs, it was concluded that the likelihood of impact was by no means assured, even in these six cases. It was concluded that in most cases, current entrainment and impingement losses at six Ohio River power plants have little or no effect at the population level.  (+info)

Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state. (7/66)

Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), (137)Cs, and (99)Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to approximately 10(4) CFU g(-1), but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 microCi of (137)Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 microCi of (137)Cs g(-1)) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.  (+info)

Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. (8/66)

Our understanding of subsurface microbiology is hindered by the inaccessibility of this environment, particularly when the hydrogeologic medium is contaminated with toxic substances. In this study, surrogate geological media contained in a porous receptacle were incubated in a well within the saturated zone of a pristine region of an aquifer to capture populations from the extant communities. After an 8-week incubation, the media were recovered, and the microbial community that developed on each medium was compared to the community recovered from groundwater and native sediments from the same region of the aquifer, using 16S DNA coding for rRNA (rDNA)-based terminal restriction fragment length polymorphism (T-RFLP). The groundwater and sediment communities were highly distinct from one another, and the communities that developed on the various media were more similar to groundwater communities than to sediment communities. 16S rDNA clone libraries of communities that developed on particles of a specular hematite medium incubated in the same well as the media used for T-RFLP analysis were compared with those obtained from an acidic, uranium-contaminated region of the same aquifer. The hematite-associated community formed in the pristine area was highly diverse at the species level, with 25 distinct phylotypes identified, the majority of which (73%) were affiliated with the beta-Proteobacteria. Similarly, the hematite-associated community formed in the contaminated area was populated in large part by beta-Proteobacteria (62%); however, only 13 distinct phylotypes were apparent. The three numerically dominant clones from the hematite-associated community from the contaminated site were affiliated with metal- and radionuclide-tolerant or acidophilic taxa, consistent with the environmental conditions. Only two populations were common to both sites.  (+info)