The effect of clustered versus regular sleep fragmentation on daytime function. (65/2490)

Previously, we found that regular sleep fragmentation, similar to that found in patients with sleep apnoea/hypopnoea syndrome (SAHS), impairs daytime function. Apnoeas and hypopnoeas occur in groups in patients with REM or posture related SAHS. Thus, we hypothesised that clustered sleep fragmentation would have a similar impact on daytime function as regular sleep fragmentation. We studied 16 subjects over two pairs of 2 nights and 2 days. The first night of each pair was for acclimatisation. On the second night, subjects either had their sleep fragmented regularly every 90 s, or fragmented every 30 s for 30 min every 90 min, the remaining 60 min being undisturbed. We fragmented sleep with tones to produce a minimum 3 s increase in EEG frequency. During the days following each pair of nights we tested subjects daytime function. Total sleep time (TST) and microarousal frequency were similar no both study nights. We found significantly less stage 2 (55 SD 4, 62 +/- 7%; P = 0.001) and more slow wave sleep (21 SD 3, 12 +/- 6%; P < 0.001) on the clustered night. Mean sleep onset latency was similar on MSLT (clustered 10 SD 5, regular 9 +/- 4 min; P = 0.7) and MWT (clustered 32 SD 7, regular 30 +/- 7 min; P = 0.2). There was no difference in subjects mood or cognitive function after either study night. These results suggest that although there is more slow wave sleep (SWS) on the clustered night, similar numbers of sleep fragmenting events produced similar daytime function whether the events were evenly spaced or clustered.  (+info)

Correlates of sleep and waking in Drosophila melanogaster. (66/2490)

Drosophila exhibits a circadian rest-activity cycle, but it is not known whether fly rest constitutes sleep or is mere inactivity. It is shown here that, like mammalian sleep, rest in Drosophila is characterized by an increased arousal threshold and is homeostatically regulated independently of the circadian clock. As in mammals, rest is abundant in young flies, is reduced in older flies, and is modulated by stimulants and hypnotics. Several molecular markers modulated by sleep and waking in mammals are modulated by rest and activity in Drosophila, including cytochrome oxidase C, the endoplasmic reticulum chaperone protein BiP, and enzymes implicated in the catabolism of monoamines. Flies lacking one such enzyme, arylalkylamine N-acetyltransferase, show increased rest after rest deprivation. These results implicate the catabolism of monoamines in the regulation of sleep and waking in the fly and suggest that Drosophila may serve as a model system for the genetic dissection of sleep.  (+info)

Modulation of laryngeal responses to superior laryngeal nerve stimulation by volitional swallowing in awake humans. (67/2490)

Laryngeal sensori-motor closure reflexes are important for the protection of the airway and prevent the entry of foreign substances into the trachea and lungs. The purpose of this study was to determine how such reflexes might be modulated during volitional swallowing in awake humans, when persons are at risk of entry of food or liquids into the airway. The frequency and the amplitude of laryngeal adductor responses evoked by electrical stimulation of the internal branch of the superior laryngeal nerve (ISLN) were studied during different phases of volitional swallowing. Subjects swallowed water on command while electrical stimuli were presented to the ISLN at various intervals from 500 ms to 5 s following the command. Laryngeal adductor responses to unilateral ISLN stimulation were recorded bilaterally in the thyroarytenoid muscles using hooked wire electrodes. Early ipsilateral R1 responses occurred at 17 ms, and later bilateral R2 began around 65 ms. The muscle responses to stimuli occurring during expiration without swallowing were quantified as control trials. Responses to stimulation presented before swallowing, during the swallow, within 3 s after swallowing, and between 3 and 5 s after a swallow were measured. The frequency and amplitude of three responses (ipsilateral R1 and bilateral R2) relative to the control responses were compared across the different phases relative to the occurrence of swallowing. Results demonstrated that a reduction occurred in both the frequency and amplitude of the later bilateral R2 laryngeal responses to electrical stimulation for up to 3 s after swallowing (P = 0.005). The amplitude and frequency of ipsilateral R1 laryngeal responses, however, did not show a significant main effect following the swallow (P = 0.28), although there was a significant time by measure interaction (P = 0.006) related to reduced R1 response amplitude up to 3 s after swallowing (P = 0.021). Therefore, the more rapid and shorter unilateral R1 responses continued to provide some, albeit reduced, laryngeal protective functions after swallowing, whereas the later bilateral R2 responses were suppressed both in occurrence and amplitude for up to 3 s after swallowing. The results suggest that R2 laryngeal adductor responses are suppressed following swallowing when residues may remain in the laryngeal vestibule putting persons at increased risk for the entry of foreign substances into the airway.  (+info)

Ventilatory and central neurochemical reorganisation of O2 chemoreflex after carotid sinus nerve transection in rat. (68/2490)

1. The first step of this study was to determine the early time course and pattern of hypoxic ventilatory response (HVR) recovery following irreversible bilateral carotid sinus nerve transection (CSNT). The second step was to find out if HVR recovery was associated with changes in the neurochemical activity of the medullary catecholaminergic cell groups involved in the O2 chemoreflex pathway. 2. The breathing response to acute hypoxia (10% O2) was measured in awake rats 2, 6, 10, 45 and 90 days after CSNT. In a control group of sham-operated rats, the ventilatory response to hypoxia was principally due to increased respiratory frequency. There was a large reduction in HVR in the CSNT compared to the sham-operated rats (-65%, 2 days after surgery). Within the weeks following denervation, the CSNT rats progressively recovered a HVR level similar to the sham-operated rats (-37% at 6 days, -27% at 10 days, and no difference at 45 or 90 days). After recovery, the CSNT rats exhibited a higher tidal volume (+38%) than the sham-operated rats in response to hypoxia, but not a complete recovery of respiratory frequency. 3. Fifteen days after CSNT, in vivo tyrosine hydroxylase (TH) activity had decreased in caudal A2C2 (-35%) and A6 cells (-35%). After 90 days, the CSNT rats displayed higher TH activity than the sham-operated animals in caudal A1C1 (+51%), caudal A2C2 (+129%), A5 (+216%) and A6 cells (+79%). 4. It is concluded that HVR following CSNT is associated with a profound functional reorganisation of the central O2 chemoreflex pathway, including changes in ventilatory pattern and medullary catecholaminergic activity.  (+info)

Molecular mechanisms of sleep-wake regulation: a role of prostaglandin D2. (69/2490)

Prostaglandin (PG) D2 is a major prostanoid in the brains of rats and other mammals, including humans. When PGD synthase (PGDS), the enzyme that produces PGD2 in the brain, was inhibited by the intracerebroventricular infusion of its selective inhibitors, i.e. tetravalent selenium compounds, the amount of sleep decreased both time and dose dependently. The amount of sleep of transgenic mice, in which the human PGDS gene had been incorporated, increased several fold under appropriate conditions. These data indicate that PGDS is a key enzyme in sleep regulation. In situ hybridization, immunoperoxidase staining and direct enzyme activity determination of tissue samples revealed that PGDS is hardly detectable in the brain parenchyma but is localized in the membrane systems surrounding the brain, namely, the arachnoid membrane and choroid plexus, from which it is secreted into the cerebrospinal fluid (CSF) to become beta-trace, a major protein component of the CSF. PGD2 exerts its somnogenic activity by binding to PGD2 receptors exclusively localized at the ventrorostral surface of the basal forebrain. When PGD2 was infused into the subarachnoid space below the rostral basal forebrain, striking expression of proto-oncogene Fos immunoreactivity (FosIR) was observed in the ventrolateral preoptic area (VLPO), a putative sleep centre, concurrent with sleep induction. Fos expression in the VLPO was positively correlated with the preceding amount of sleep and negatively correlated with Fos expression in the tuberomammillary nucleus (TMN), a putative wake centre. These observations suggest that PGD2 may induce sleep via leptomeningeal PGD2 receptors with subsequent activation of the VLPO neurons and downregulation of the wake neurons in the TMN area. Adenosine may be involved in the signal transduction associated with PGD2.  (+info)

Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the epworth sleepiness scale: failure of the MSLT as a gold standard. (70/2490)

Excessive daytime sleepiness (EDS) is an important symptom that needs to be quantified, but there is confusion over the best way to do this. Three of the most commonly used tests: the multiple sleep latency test (MSLT), the maintenance of wakefulness test (MWT) and the Epworth sleepiness scale (ESS) give results that are significantly correlated in a statistical sense, but are not closely related. The purpose of this investigation was to help clarify this problem. Previously published data from several investigations were used to calculate the reference range of normal values for each test, defined by the mean+/-2 SD or by the 2.5 and 97.5 percentiles. The 'rule of thumb' that many people rely on to interpret MSLT results is shown here to be misleading. Previously published results from each test were also available for narcoleptic patients who were drug-free at the time and who by definition had EDS. This enabled the sensitivity and specificity of the three tests to be compared for the first time, in their ability to distinguish the EDS of narcolepsy from the daytime sleepiness of normal subjects. The receiver operator characteristic curves clearly showed that the ESS is the most discriminating test, the MWT is next best and the MSLT the least discriminating test of daytime sleepiness. The MSLT can no longer be considered the gold standard for such tests.  (+info)

The role of the spindle in human information processing of high-intensity stimuli during sleep. (71/2490)

Sleep spindles are 12-14 Hz oscillations in EEG, which are thought to inhibit or 'gate' information processing. Event-related potentials may be employed to probe the extent of information processing during sleep. Previous research indicates that event-related potentials elicited by moderate intensity stimuli show increased positivity (or further removal of negativity) when stimuli are presented concurrent with spindles. However, the effectiveness of spindles to inhibit the processing of much louder stimuli remains unknown. The purpose of the present study was to investigate the extent of this gating, by using a range of stimuli including those that are loud and intrusive. Eight good sleepers were recorded during a single night. Auditory stimuli were delivered randomly at 0, 60, 80 or 100 dB SPL. Trials were sorted off-line by sleep stage, stimulus intensity and spindle characteristic (i.e. spindle absent, spindle present). During the sleep-onset period, the often-reported changes in event-related potentials were observed - N1 decreased and P2 increased in amplitude. In Stage 2 sleep, P2 was affected by the presence of spindles, particularly when stimulus intensity was loud. Its amplitude was greatest when spindles occurred following the onset of the stimulus. Scalp-recorded spindles might, therefore, be a consequence of the prior thalamic inhibition of information processing, especially when confronted by loud, intrusive external stimuli.  (+info)

Age differences in the spontaneous termination of sleep. (72/2490)

The stage from which the spontaneous ending of sleep occurred was investigated in 138 sleep episodes obtained from 14 younger (19-28 years) and 11 older (60-82 years) individuals. The possible influences of circadian phase and quality of the preceding sleep period, as well as the impact of aging on characteristics of sleep termination were examined. Under experimental conditions in which subjects were isolated from time cues, and behavioral options to sleep were limited, no age-associated differences in the duration of sleep periods, or in the number or duration of REM episodes were observed. Despite similar percentages of NREM (stages 2-4) and REM sleep across age groups, younger subjects awakened preferentially from REM while older subjects did not. Of the sleep episodes obtained from older subjects, those with sleep efficiencies higher than the median were more likely to terminate from REM than those with lower sleep efficiencies. For all subjects, the REM episodes from which sleep termination occurred were truncated relative to those that did not end the sleep period. In addition, nonterminating REM episodes that were interrupted by a stage shift were most often interrupted by brief arousals to stage 0. Such arousals within nonterminating REM episodes occurred, on average, after a similar duration as the terminating point of sleep-ending REM episodes. The results from this study demonstrate that there are age-related differences in the sleep stage from which spontaneous awakenings occur, and that these differences may be due in part to the quality of the sleep period preceding termination. Findings regarding the characteristics of both terminating and nonterminating REM episodes are consistent with the notion that the neural and biochemical context of REM sleep may facilitate a smooth transition to wakefulness. It is speculated that age-associated changes in sleep continuity may render unnecessary the putative role of REM sleep in providing a 'gate' to wakefulness.  (+info)