(1/321) Blind smell: brain activation induced by an undetected air-borne chemical.

EEG and behavioural evidence suggests that air-borne chemicals can affect the nervous system without being consciously detected. EEG and behaviour, however, do not specify which brain structures are involved in chemical sensing that occurs below a threshold of conscious detection. Here we used functional MRI to localize brain activation induced by high and low concentrations of the air-borne compound oestra-1,3,5(10),16-tetraen-3yl acetate. Following presentations of both concentrations, eight of eight subjects reported verbally that they could not detect any odour (P = 0.004). Forced choice detection performed during the presentations revealed above-chance detection of the high concentration, but no better than chance detection of the low concentration compound. Both concentrations induced significant brain activation, primarily in the anterior medial thalamus and inferior frontal gyrus. Activation in the inferior frontal gyrus during the high concentration condition was significantly greater in the right than in the left hemisphere (P = 0.03). A trend towards greater thalamic activation was observed for the high concentration than the low concentration compound (P = 0.08). These findings localize human brain activation that was induced by an undetectable air-borne chemical (the low concentration compound).  (+info)

(2/321) The distribution of sugar chains on the vomeronasal epithelium observed with an atomic force microscope.

The distribution of sugar chains on tissue sections of the rat vomeronasal epithelium, and the adhesive force between the sugar and its specific lectin were examined with an atomic force microscope (AFM). AFM tips were modified with a lectin, Vicia villosa agglutinin, which recognizes terminal N-acetyl-D-galactosamine (GalNAc). When a modified tip scanned the luminal surface of the sensory epithelium, adhesive interactions between the tip and the sample surface were observed. The final rupture force was calculated to be approximately 50 pN based on the spring constant of the AFM cantilever. Distribution patterns of sugar chains obtained from the force mapping image were very similar to those observed using fluorescence-labeled lectin staining. AFM also revealed distribution patterns of sugar chains at a higher resolution than those obtained with fluorescence microscopy. Most of the adhesive interactions disappeared when the scanning solution contained 1 mM GaINAc. The adhesive interactions were restored by removing the sugar from the solution. Findings suggest that the adhesion force observed are related to the binding force between the lectin and the sugars distributed across the vomeronasal epithelium.  (+info)

(3/321) Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system.

The vomeronasal system mediates pheromonal effects in mammals. We have employed gene targeting technology to introduce mutations in a putative pheromone receptor gene, VR2, in the germline of mice. By generating alleles differentially tagged with the histological markers taulacZ and tauGFP, we show that VR2 is monoallelically expressed in a given neuron. Axons of VR2-expressing neurons converge onto numerous glomeruli in the accessory olfactory bulb. The pattern of axonal projections is complex and variable. This wiring diagram is substantially different from that of the main olfactory system. The projection pattern is disrupted by deleting the coding region of VR2, but an unrelated seven-transmembrane protein, the odorant receptor M71, can partially substitute for VR2.  (+info)

(4/321) A map of pheromone receptor activation in the mammalian brain.

In mammals, the detection of pheromones is mediated by the vomeronasal system. We have employed gene targeting to visualize the pattern of projections of axons from vomeronasal sensory neurons in the accessory olfactory bulb. Neurons expressing a specific receptor project to multiple glomeruli that reside within spatially restricted domains. The formation of this sensory map in the accessory olfactory bulb and the survival of vomeronasal organ sensory neurons require the expression of pheromone receptors. In addition, we observe individual glomeruli in the accessory olfactory bulb that receive input from more than one type of sensory neuron. These observations indicate that the organization of the vomeronasal sensory afferents is dramatically different from that of the main olfactory system, and these differences have important implications for the logic of olfactory coding in the vomeronasal organ.  (+info)

(5/321) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling.

The vomeronasal organ (VNO) of terrestrial vertebrates plays a key role in the detection of pheromones, chemicals released by animals that elicit stereotyped sexual and aggressive behaviors among conspecifics. Sensory transduction in the VNO appears unrelated to that in the vertebrate olfactory and visual systems: the putative pheromone receptors of the VNO are evolutionarily independent from the odorant receptors and, in contrast to vertebrate visual and olfactory transduction, vomeronasal transduction is unlikely to be mediated by cyclic-nucleotide-gated channels. We hypothesized that sensory transduction in the VNO might instead involve an ion channel of the transient receptor potential (TRP) family, members of which mediate cyclic-nucleotide-independent sensory responses in Drosophila melanogaster and Caenorhabditis elegans and play unknown functions in mammals. We have isolated a cDNA (rTRP2) from rat VNO encoding a protein of 885 amino acids that is equally distant from vertebrate and invertebrate TRP channels (10-30% amino acid identity). rTRP2 mRNA is exclusively expressed in VNO neurons, and the protein is highly localized to VNO sensory microvilli, the proposed site of pheromone sensory transduction. The absence of Ca2+ stores in sensory microvilli suggests that, in contrast to a proposed mechanism of activation of mammalian TRP channels, but in accord with analysis of TRP function in Drosophila phototransduction, the gating of TRP2 is independent from the depletion of internal Ca2+ stores. Thus, TRP2 is likely to participate in vomeronasal sensory transduction, which may share additional similarities with light-induced signaling in the Drosophila eye.  (+info)

(6/321) The vomeronasal organ of the male ferret.

The vomeronasal organ (VNO) is known to play a major role in sexual behavior in many mammals. This study is the first report that the adult male ferret has a VNO, which is considerably smaller and morphologically different from the usually crescent-shaped epithelium in several mammalian species, particularly rodents. There were no differences in the size or structure of the ferret VNO between the mating season in spring and the sexually quiescent season in autumn, although plasma testosterone, testis size and brain size are dramatically increased in spring and behavior changes significantly. The histological data suggest that the VNO might be not as important a structure in male ferret sexual behavior as in rodents.  (+info)

(7/321) Laminar distribution of pheromone-receptive neurons in rat vomeronasal epithelium.

1. Responses of vomeronasal sensory neurons to urine excreted from rats, mice and hamsters were studied by the on-cell patch clamp method in slices of sensory epithelium from female Wistar rats. 2. The urine excreted from male and female Wistar rats, male Donryu rats and male C57BL/6 mice induced relatively large responses, while urine from male Sprague-Dawley rats and male Syrian hamsters induced small responses. 3. Of the 62 neurons responding to urine, 57 responded to only one of the urine preparations. 4. The sensory neurons that responded to the male Wistar urine were localized in the apical position of the epithelium where one type of GTP-binding protein, Gi2alpha, is selectively expressed. The neurons in the basal position of the epithelium, which express Goalpha, responded to urine from the other animals. 5. This study demonstrates that sensory neurons responsive to different urinary pheromones are localized in a segregated layer in the rat vomeronasal sensory epithelium.  (+info)

(8/321) Pheromone reception: A complex map of activation in the brain.

Recent studies of the projection pattern made by sensory neurons involved in mammalian pheromone reception have shown that there is a map of activation in the brain, but this pheromone map appears far more complex than the equivalent map in the main olfactory system responsible for the sense of smell.  (+info)