Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. (33/153)

Continental flood basalt (CFB) volcanism is hypothesized to have played a causative role in global climate change and mass extinctions. Uncertainties associated with radiometric dating preclude a clear chronological assessment of the environmental consequences of CFB volcanism. Our results document a 25% decline in the marine 187Os/188Os record that predates the Cretaceous-Tertiary boundary (KTB) and coincides with late Maastrichtian warming. We argue that this decline provides a chemostratigraphic marker of Deccan volcanism and thus constitutes compelling evidence that the main environmental consequence of Deccan volcanism was a transient global warming event of 3 degrees to 5 degrees C that is fully resolved from the KTB mass extinction.  (+info)

TRPV1 receptors mediate particulate matter-induced apoptosis. (34/153)

Exposure to airborne particulate matter (PM) is a world-wide health problem mainly because it produces adverse cardiovascular and respiratory effects that frequently result in morbidity. Despite many years of epidemiological and basic research, the mechanisms underlying PM toxicity remain largely unknown. To understand some of these mechanisms, we measured PM-induced apoptosis and necrosis in normal human airway epithelial cells and sensory neurons from both wild-type mice and mice lacking TRPV1 receptors using Alexa Fluor 488-conjugated annexin V and propidium iodide labeling, respectively. Exposure of environmental PMs containing residual oil fly ash and ash from Mount St. Helens was found to induce apoptosis, but not necrosis, as a consequence of sustained calcium influx through TRPV1 receptors. Apoptosis was completely prevented by inhibiting TRPV1 receptors with capsazepine or by removing extracellular calcium or in sensory neurons from TRPV1(-/-) mice. Binding of either one of the PMs to the cell membrane induced a capsazepine-sensitive increase in cAMP. PM-induced apoptosis was augmented upon the inhibition of PKA. PKA inhibition on its own also induced apoptosis, thereby suggesting that this pathway may be endogenously protective against apoptosis. In summary, it was found that inhibiting TRPV1 receptors prevents PM-induced apoptosis, thereby providing a potential mechanism to reduce their toxicity.  (+info)

Idiomarina loihiensis sp. nov., a halophilic gamma-Proteobacterium from the Lo'ihi submarine volcano, Hawai'i. (35/153)

During an investigation of bacterial diversity at hydrothermal vents on the Lo'ihi Seamount, Hawai'i, a novel bacterium (designated L2-TR(T)) was cultivated, which shares 99.9 % 16S rRNA gene sequence similarity over 1415 nt with an uncultured eubacterium from sediment at a depth of 11 000 m in the Mariana Trench. The nearest cultivated neighbour of L2-TR(T), however, is Idiomarina abyssalis KMM 227(T), with which it shares 98.9 % 16S rRNA sequence similarity. L2-TR(T) differed from I. abyssalis KMM 227(T) in several phenotypic respects, including growth at 46 degrees C and in medium that contained 20 % (w/v) NaCl. DNA-DNA hybridization data showed that L2-TR(T) did not belong to the species I. abyssalis (43.4 % DNA-DNA reassociation). Cells of L2-TR(T) were Gram-negative rods, 0.35 microm wide and 0.7-1.0 microm long, which were occasionally up to 1.8 microm in length. Cells were motile by a single polar or subpolar flagellum. The major fatty acid in L2-TR(T) was iso-C(15 : 0) (32.6 %). The DNA G+C content was 47.4 mol%. Phenotypic and genotypic analyses indicated that L2-TR(T) could be assigned to the genus Idiomarina but, based on significant phenotypic and genotypic differences, constituted a novel species within this genus, Idiomarina loihiensis sp. nov., of which L2-TR(T) (=ATCC BAA-735(T)=DSM 15497(T)) is the type strain.  (+info)

Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume. (36/153)

Microbial diversity and populations in a hydrothermal plume that was present inside the caldera of the Suiyo Seamount, a submarine volcano on the Izu-Bonin Arc, were investigated by performing a phylogenetic analysis of the 16S rRNA gene and by using fluorescence in situ hybridization (FISH). Corresponding to transmissivity, an indicator of turbidity, the vertical total cell count as determined by 4',6'-diamidino-2-phenylindole (DAPI) staining varied from 5.6 x 10(4) to 1.1 x 10(5) cells ml(-1), and the apparent plume layer was assessed to be at a depth of 1,050 to 1,200 m inside the caldera and to contain 1.0 x 10(5) to 1.1 x 10(5) cells ml(-1). From microbial samples collected in the plume by an in situ filtration system, the following two major phylogenetic groups, which were closely related to sulfur-oxidizing microbes, were obtained: the SUP05 group belonging to the gamma subclass of the Proteobacteria (13 of 20 clones) and the SUP01 group belonging to the epsilon subclass of the Proteobacteria (5 of 20 clones). Specific oligonucleotide probes for these groups (SUP05-187 and SUP01-63) were designed and were used with various water samples obtained from the Suiyo Seamount. In the apparent plume layer, up to 66% of the total counts of microbial cells were estimated to be Bacteria cells that hybridized to EUB338, and few cells were identified by the archaeal probe ARCH915. Almost all Bacteria cells were hard to identify with the known group-specific probes, such as ALF19, GAM42a, and CF319, while 88 to 90% of the Bacteria cells hybridized with SUP05-187 and >98% of them were considered members of the SUP05 and SUP01 populations. In a low-temperature vent fluid emitted from a bivalve-colonized mound, the SUP05 cells accounted for >99% of the Bacteria cells, suggesting that a portion of the plume cells originated on the surface of the seafloor at a depth of about 1,380 m. From further analysis of cell morphology (i.e., cell size and cell elongation index) we inferred that the SUP05 cells were active in the plume layer at a depth of 1,050 to 1,200 m compared to the activity in a near-bottom layer, while many elongated cells were found between these layers. These findings suggest that the morphology and distribution of SUP05 cells have complex relationships with hydrothermal activities and water circulation. Although growth and production rates remain to be defined, we concluded that this Suiyo Seamount caldera has functioned as a natural continuous incubator for these two phylotypes of Bacteria in an aphotic deep-sea environment.  (+info)

Bacillus shackletonii sp. nov., from volcanic soil on Candlemas Island, South Sandwich archipelago. (37/153)

A sample of mossy soil taken from the eastern lava flow of northern Candlemas Island, South Sandwich archipelago, yielded six isolates of aerobic, endospore-forming bacteria. Miniaturized routine phenotypic tests and other observations, amplified rDNA restriction analysis and SDS-PAGE analysis suggested that the strains represent a novel taxon. 16S rDNA sequence comparisons support the proposal of a novel species, Bacillus shackletonii sp. nov., the type strain of which is LMG 18435(T) (=CIP 107762(T)).  (+info)

Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. (38/153)

A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.  (+info)

Early life recorded in archean pillow lavas. (39/153)

Pillow lava rims from the Mesoarchean Barberton Greenstone Belt in South Africa contain micrometer-scale mineralized tubes that provide evidence of submarine microbial activity during the early history of Earth. The tubes formed during microbial etching of glass along fractures, as seen in pillow lavas from recent oceanic crust. The margins of the tubes contain organic carbon, and many of the pillow rims exhibit isotopically light bulk-rock carbonate delta13C values, supporting their biogenic origin. Overlapping metamorphic and magmatic dates from the pillow lavas suggest that microbial life colonized these subaqueous volcanic rocks soon after their eruption almost 3.5 billion years ago.  (+info)

Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. (40/153)

In the Campeche Knolls, in the southern Gulf of Mexico, lava-like flows of solidified asphalt cover more than 1 square kilometer of the rim of a dissected salt dome at a depth of 3000 meters below sea level. Chemosynthetic tubeworms and bivalves colonize the sea floor near the asphalt, which chilled and contracted after discharge. The site also includes oil seeps, gas hydrate deposits, locally anoxic sediments, and slabs of authigenic carbonate. Asphalt volcanism creates a habitat for chemosynthetic life that may be widespread at great depth in the Gulf of Mexico.  (+info)