Vocal imitation in zebra finches is inversely related to model abundance. (25/1823)

A juvenile male zebra finch, Taeniopygia guttata, kept singly with its father develops a fairly complete imitation of the father's song. The imitation is less complete when other male siblings are present, possibly because as imitation commences, model abundance increases. Here we examine the consequences of allowing more or less access to a song model. Young males heard a brief song playback when they pecked at a key, but different males were allowed to hear different numbers of playbacks per day. Using an automated procedure that scored the similarity between model and pupil songs, we discovered that 40 playbacks of the song motif per day, lasting a total of 30 sec, resulted in a fairly complete imitation. More exposure led to less complete imitation. Vocal imitation often may reflect the interaction of diverse influences. Among these, we should now include the possible inhibitory effect of model overabundance, which may foster individual identity and explain the vocal diversity found in zebra finches and other songbirds.  (+info)

Contractile properties of muscles used in sound production and locomotion in two species of gray tree frog. (26/1823)

The sound-producing muscles of frogs and toads are interesting because they have been selected to produce high-power outputs at high frequencies. The two North American species of gray tree frog, Hyla chrysoscelis and Hyla versicolor, are a diploid-tetraploid species pair. They are morphologically identical, but differ in the structure of their advertisement calls. H. chrysoscelis produces very loud pulsed calls by contracting its calling muscles at approximately 40 Hz at 20 degrees C, whereas, H. versicolor operates the homologous muscles at approximately 20 Hz at this temperature. This study examined the matching of the intrinsic contractile properties of the calling muscles to their frequency of use. I measured the isotonic and isometric contractile properties of two calling muscles, the laryngeal dilator, which presumably has a role in modulating call structure, and the external oblique, which is one of the muscles that provides the mechanical power for calling. I also examined the properties of the sartorius as a representative locomotor muscle. The calling muscles differ greatly in twitch kinetics between the two species. The calling muscles of H. chrysoscelis reach peak tension in a twitch after approximately 15 ms, compared with 25 ms for the same muscles in H. versicolor. The muscles also differ significantly in isotonic properties in the direction predicted from their calling frequencies. However, the maximum shortening velocities of the calling muscles of H. versicolor are only slightly lower than those of the comparable muscles of H. chrysoscelis. The calling muscles have similar maximum shortening velocities to the sartorius, but have much flatter force-velocity curves, which may be an adaptation to their role in cyclical power output. I conclude that twitch properties have been modified more by selection than have intrinsic shortening velocities. This difference corresponds to the differing roles of shortening velocity and twitch kinetics in determining power output at differing frequencies.  (+info)

Power output of sound-producing muscles in the tree frogs Hyla versicolor and Hyla chrysoscelis. (27/1823)

Sound-producing muscles provide the opportunity of studying the limits of power production at high contractile frequencies. We used the work loop technique to determine the power available from the external oblique muscles in two related species of North American gray tree frog, Hyla chrysoscelis and Hyla versicolor. These trunk muscles contract cyclically, powering high-intensity sound production in anuran amphibians. The external oblique muscles in H. chrysoscelis have an in vivo operating frequency of 40-55 Hz at 20-25 degrees C, whereas in H. versicolor these muscles contract with a frequency of 20-25 Hz at these temperatures. In vivo investigations have shown that these muscles use an asymmetrical sawtooth length trajectory (with a longer shortening phase compared with the lengthening phase) during natural cycles. To study the influence of this particular length trajectory on power output, we subjected the muscles to both sinusoidal and sawtooth length trajectories. In both species, the sawtooth trajectory yielded a significantly higher power output than the sinusoidal length pattern. The maximum power output during sawtooth cycles was similar in both species (54 W kg(-)(1) in H. chrysoscelis and 58 W kg(-)(1) in H. versicolor). These values are impressive, particularly at the operating frequencies and temperatures of the muscle. The sinusoidal length trajectory yielded only 60 % of the total power output compared with the sawtooth trajectory (34 W kg(-)(1) for H. chrysoscelis and 36 W kg(-)(1) for H. versicolor). The optimum cycle frequencies maximizing the power output using a sawtooth length pattern were approximately 44 Hz for H. chrysoscelis and 21 Hz for H. versicolor. These frequencies are close to those used by the two species during calling. Operating at higher frequencies, H. chrysoscelis maximized power at a strain amplitude of only 8 % compared with a value of 12 % in H. versicolor. These strains match those used in vivo during calling. The stimulus timing observed in vivo during calling was also similar to that yielding maximum power at optimal frequency in both species (6 ms and 8 ms before the start of shortening in H. chrysoscelis and H. versicolor, respectively). As expected, twitch duration in H. chrysoscelis is much shorter than that in H. versicolor (23 ms and 37 ms, respectively). There was a less remarkable difference between their maximum shortening velocities (V(max)) of 13.6 L(0 )s(-)(1) in H. chrysoscelis and 11.1 L(0 )s(-)(1) in H. versicolor, where L(0) is muscle length. The force-velocity curves are very flat, which increases power output. At the myofibrillar level, the flat force-velocity curves more than compensate for the lower peak isometric force found in these muscles. The data presented here emphasize the importance of incorporating in vivo variables in designing in vitro studies.  (+info)

Androgens modulate NMDA receptor-mediated EPSCs in the zebra finch song system. (28/1823)

Androgens potently regulate the development of learned vocalizations of songbirds. We sought to determine whether one action of androgens is to functionally modulate the development of synaptic transmission in two brain nuclei, the lateral part of the magnocellular nucleus of the anterior neostriatum (LMAN) and the robust nucleus of the archistriatum (RA), that are critical for song learning and production. We focused on N-methyl-D-aspartate-excitatory postsynaptic currents (NMDA-EPSCs), because NMDA receptor activity in LMAN is crucial to song learning, and because the LMAN synapses onto RA neurons are almost entirely mediated by NMDA receptors. Whole cell recordings from in vitro brain slice preparations revealed that the time course of NMDA-EPSCs was developmentally regulated in RA, as had been shown previously for LMAN. Specifically, in both nuclei, NMDA-EPSCs become faster over development. We found that this developmental transition can be modulated by androgens, because testosterone treatment of young animals caused NMDA-EPSCs in LMAN and RA to become prematurely fast. These androgen-induced effects were limited to fledgling and juvenile periods and were spatially restricted, in that androgens did not accelerate developmental changes in NMDA-EPSCs recorded in a nonsong area, the Wulst. To determine whether androgens had additional effects on LMAN or RA neurons, we examined several other physiological and morphological parameters. In LMAN, testosterone affected alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprianate-EPSC (AMPA-EPSC) decay times and the ratio of peak synaptic glutamate to AMPA currents, as well as dendritic length and spine density but did not alter soma size or dendritic complexity. In contrast, testosterone did not affect any of these parameters in RA, which demonstrates that exogenous androgens can have selective actions on different song system neurons. These data are the first evidence for any effect of sex steroids on synaptic transmission within the song system. Our results support the idea that endogenous androgens limit sensitive periods for song learning by functionally altering synaptic transmission in song nuclei.  (+info)

Frequency organization and responses to complex sounds in the medial geniculate body of the mustached bat. (29/1823)

The auditory cortex of the mustached bat (Pteronotus parnellii) displays some of the most highly developed physiological and organizational features described in mammalian auditory cortex. This study examines response properties and organization in the medial geniculate body (MGB) that may contribute to these features of auditory cortex. About 25% of 427 auditory responses had simple frequency tuning with single excitatory tuning curves. The remainder displayed more complex frequency tuning using two-tone or noise stimuli. Most of these were combination-sensitive, responsive to combinations of different frequency bands within sonar or social vocalizations. They included FM-FM neurons, responsive to different harmonic elements of the frequency modulated (FM) sweep in the sonar signal, and H1-CF neurons, responsive to combinations of the bat's first sonar harmonic (H1) and a higher harmonic of the constant frequency (CF) sonar signal. Most combination-sensitive neurons (86%) showed facilitatory interactions. Neurons tuned to frequencies outside the biosonar range also displayed combination-sensitive responses, perhaps related to analyses of social vocalizations. Complex spectral responses were distributed throughout dorsal and ventral divisions of the MGB, forming a major feature of this bat's analysis of complex sounds. The auditory sector of the thalamic reticular nucleus also was dominated by complex spectral responses to sounds. The ventral division was organized tonotopically, based on best frequencies of singly tuned neurons and higher best frequencies of combination-sensitive neurons. Best frequencies were lowest ventrolaterally, increasing dorsally and then ventromedially. However, representations of frequencies associated with higher harmonics of the FM sonar signal were reduced greatly. Frequency organization in the dorsal division was not tonotopic; within the middle one-third of MGB, combination-sensitive responses to second and third harmonic CF sonar signals (60-63 and 90-94 kHz) occurred in adjacent regions. In the rostral one-third, combination-sensitive responses to second, third, and fourth harmonic FM frequency bands predominated. These FM-FM neurons, thought to be selective for delay between an emitted pulse and echo, showed some organization of delay selectivity. The organization of frequency sensitivity in the MGB suggests a major rewiring of the output of the central nucleus of the inferior colliculus, by which collicular neurons tuned to the bat's FM sonar signals mostly project to the dorsal, not the ventral, division. Because physiological differences between collicular and MGB neurons are minor, a major role of the tecto-thalamic projection in the mustached bat may be the reorganization of responses to provide for cortical representations of sonar target features.  (+info)

Opioid peptides and behavioral and physiological responses of dairy cows to social isolation in unfamiliar surroundings. (30/1823)

To test whether endogenous opioid peptides are involved in the behavioral and physiological responses of cattle to stress, 12 Holstein cows were either placed in social isolation in unfamiliar surroundings for 15 min or remained in their home stalls, either with or without naloxone treatment, following a Latin square design. Vocalizations (judged as high or low frequency), defecation/urination, and heart rate were recorded, latency to respond to local thermal stimulation of the leg by means of a laser was measured to detect pain sensitivity, and blood was sampled and assayed for cortisol concentrations. Naloxone in the home stall increased cortisol concentrations and tended to reduce response latencies to the laser but did not induce vocalization. Social isolation increased the incidence of high-frequency vocalization and of defecation/urination, heart rate, cortisol concentrations, and response latencies to the laser. Prior administration of naloxone increased the incidence of low-frequency vocalization in isolation, but it had no effect on heart rate or on responses to the laser and only limited effect on cortisol concentrations when the cows were isolated. Brief periods of social isolation in unfamiliar surroundings seem to be stressful to cows, as indicated by increased heart rate, hypothalamic-pituitary-adrenocortical axis activity, and vocalization. Isolation also reduces pain sensitivity, suggesting a stress-induced analgesia. However, we found no evidence that naloxone-sensitive opioid receptors were involved in these responses.  (+info)

Singing-related neural activity in a dorsal forebrain-basal ganglia circuit of adult zebra finches. (31/1823)

The anterior forebrain pathway (AFP) of songbirds, a specialized dorsal forebrain-basal ganglia circuit, is crucial for song learning but has a less clear function in adults. We report here that neurons in two nuclei of the AFP, the lateral magnocellular nucleus of the anterior neostriatum (LMAN) and Area X, show marked changes in neurophysiological activity before and during singing in adult zebra finches. The presence of modulation before song output suggests that singing-related AFP activity originates, at least in part, in motor control nuclei. Some neurons in LMAN of awake birds also responded selectively to playback of the bird's own song, but neural activity during singing did not completely depend on auditory feedback in the short term, because neither the level nor the pattern of this activity was strongly affected by deafening. The singing-related activity of neurons in AFP nuclei of songbirds is consistent with a role of the AFP in adult singing or song maintenance, possibly related to the function of this circuit during initial song learning.  (+info)

Deafening alters neuron turnover within the telencephalic motor pathway for song control in adult zebra finches. (32/1823)

In the telencephalon of adult songbirds, projection neurons are lost and replaced within the efferent pathway controlling learned vocal behavior. We examined the potential role of auditory experience in regulating the addition and long-term survival of vocal control neurons in adult male zebra finches. Deafened and control birds were injected with the cell birth marker [(3)H]thymidine and then killed 1 or 4 months later. At the 1 month survival time, the number of [(3)H]-labeled neurons present in the high vocal center (HVC) was 70% lower in deafened birds compared with controls. This was true for all [(3)H]-labeled HVC neurons, as well as the subset that projected to the robust nucleus of the archistriatum. Over the next 3 months, two-thirds of the [(3)H]-labeled HVC neurons in control birds were lost, presumably through cell death. Surprisingly, deafened birds showed no loss over this interval. The total number of HVC neurons did not differ between control and deafened birds at either survival time. Nuclear diameters of [(3)H]-labeled HVC neurons decreased with cell age in both control and deafened birds, a process that may relate to the eventual death and replacement of these cells. These results suggest that experience influences the addition and also the longer-term fate of neurons formed in adulthood. We propose that auditory deprivation decreases the incorporation of new neurons and prolongs their life span. Alterations in the neuronal replacement cycle may relate to the gradual deterioration in song that occurs after deafening in adult zebra finches.  (+info)