A grapevine gene encoding a guard cell K(+) channel displays developmental regulation in the grapevine berry. (9/968)

SIRK is a K(+) channel identified in grapevine (Vitis vinifera), belonging to the so-called Shaker family. The highest sequence similarities it shares with the members of this family are found with channels of the KAT type, although SIRK displays a small ankyrin domain. This atypical feature provides a key to understand the evolution of the plant Shaker family. Expression in Xenopus laevis oocytes indicated that SIRK is an inwardly rectifying channel displaying functional properties very similar to those of KAT2. The activity of SIRK promoter region fused to the GUS reporter gene was analyzed in both grapevine and Arabidopsis. Like other KAT-like channels, SIRK is expressed in guard cells. In Arabidopsis, the construct is also expressed in xylem parenchyma. Semiquantitative reverse transcriptase-polymerase chain reaction experiments indicated that SIRK transcript was present at low levels in the berry, during the first stages of berry growth. After veraison, the period of berry development that corresponds to the inception of ripening and that is associated with large biochemical and structural modifications, such as evolution of stomata in nonfunctional lenticels and degeneration of xylem vasculature, the transcript was no longer detected. The whole set of data suggests that in the berries SIRK is expressed in guard cells and, possibly, in xylem tissues. The encoded channel polypeptide could therefore play a role in the regulation of transpiration and water fluxes in grapevine fruits.  (+info)

Grape seed extract activates Th1 cells in vitro. (10/968)

Although flavonoids manifest a diverse range of biological activities, including antitumor and antiviral effects, the molecular mechanisms underlying these activities await elucidation. We hypothesize that the flavonoid constituents of a proprietary grape seed extract (GSE) that contains procyandins exert significant antiviral and antitumor effects, by inducing production of the Th1-derived cytokine gamma interferon (IFN-gamma) by peripheral blood mononuclear cells) from healthy donors. Our results show that GSE significantly induced the transcription of IFN-gamma mRNA as demonstrated by reverse transcription-PCR but had no effect on the Th2-derived cytokine interleukin-6. The enhancing effect of GSE on IFN-gamma expression was further supported by a concomitant increase in the number of cells with intracytoplasmic IFN-gamma as well as the synthesis and secretion of IFN-gamma. Our results demonstrate that the potentially beneficial immunostimulatory effects of GSE may be mediated through the induction of IFN-gamma.  (+info)

Involvement of RNA2-encoded proteins in the specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index. (11/968)

The nepovirus Grapevine fanleaf virus (GFLV) is specifically transmitted by the nematode Xiphinema index. To identify the RNA2-encoded proteins involved in X. index-mediated spread of GFLV, chimeric RNA2 constructs were engineered by replacing the 2A, 2B(MP), and/or 2C(CP) sequences of GFLV with their counterparts in Arabis mosaic virus (ArMV), a closely related nepovirus which is transmitted by Xiphinema diversicaudatum but not by X. index. Among the recombinant viruses obtained from transcripts of GFLV RNA1 and chimeric RNA2, only those which contained the 2C(CP) gene (504 aa) and 2B(MP) contiguous 9 C-terminal residues of GFLV were transmitted by X. index as efficiently as natural and synthetic wild-type GFLV, regardless of the origin of the 2A and 2B(MP) genes. As expected, ArMV was not transmitted probably because it is not retained by X. index. These results indicate that the determinants responsible for the specific spread of GFLV by X. index are located within the 513 C-terminal residues of the polyprotein encoded by RNA2.  (+info)

Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. (12/968)

Photosynthetic carbon isotope composition (delta(13)C) was measured on sugars in mature fruits from field-grown grapevines. Sugar delta(13)C and summer predawn leaf water potential were significantly correlated. The survey of different vineyards during four growing seasons showed that sugar delta(13)C in must at harvest varied from -20 per thousand to -26 per thousand when conditions during berry maturation varied from dry to wet. This range allows a very sensitive detection of grapevine water status under natural conditions. However, local differences due to soil capacity to supply water to grapevines are maintained, whatever the annual water balance. Leaf nitrogen content variations of field-grown grapevines did not change delta(13)C values. Genetic variability of delta(13)C between 31 grapevine varieties for delta(13)C was observed. Must sugar delta(13)C can be used to characterize vineyards for their soil structural capacity to provide water to grapevines. It was concluded that isotope carbon composition in grapevine measured on sugars at harvest can be applied to compare the capacities of vineyard soils and canopy management to induce mild water stress in order to produce premium wines.  (+info)

Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. (13/968)

BACKGROUND: Increasing evidence shows that red wine consumption has cardioprotective effects. These effects have been attributed to the polyphenolic compounds in grapes. OBJECTIVE: We studied the effects of red grape seed proanthocyanidins on the recovery of postischemic function in isolated rat hearts. DESIGN: Two groups of rats were fed different doses of proanthocyanidin-rich extract for 3 wk and another group was untreated and served as controls. The animals were then anesthetized and the hearts were isolated and subjected to 30 min of ischemia followed by 2 h of reperfusion. Coronary effluents were collected during the third minute of reperfusion for measurement of oxygen free radicals by using electron spin resonance spectroscopy. RESULTS: In rats treated with 50 and 100 mg grape seed proanthocyanidins/kg, the incidence of reperfusion-induced ventricular fibrillation was reduced from its control value of 92% to 42% and 25%, respectively (P < 0.05 for both). The incidence of ventricular tachycardia showed the same pattern. In rats treated with 100 mg proanthocyanidins/kg, the recovery of coronary flow, aortic flow, and developed pressure after 60 min of reperfusion was improved by 32% +/- 8%, 98% +/- 8%, and 37% +/- 3%, respectively (P < 0.05 for all) compared with untreated control rats. Electron spin resonance studies indicated that proanthocyanidins significantly inhibited the formation of oxygen free radicals. In rats treated with 100 mg proanthocyanidins/kg, free radical intensity was reduced by 75% +/- 7% (P < 0.05) compared with the control rats. CONCLUSION: Grape seed proanthocyanidins have cardioprotective effects against reperfusion-induced injury via their ability to reduce or remove, directly or indirectly, free radicals in myocardium that is reperfused after ischemia.  (+info)

Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region. (14/968)

Dihydroflavonol reductase (DFR) is a key enzyme involved in anthocyanin biosynthesis and proanthocyanidin synthesis in grape. DFR catalyses the reduction of dihydroflavonols to leucoanthocyanidins in the anthocyanin pathway. The DFR products, the leucoanthocyanidins, are substrates for the next step in the anthocyanin pathway and are also the substrates for the proanthocyanidin pathway. In the present study the promoter of the grape dfr gene was cloned. Analysis of the dfr promoter sequence revealed the existence of several putative DNA binding motifs. The dfr promoter was fused to the uidA gene and the control of this fusion and the endogenous dfr gene expression, was studied in transformed plants and in red cell suspension originated from fruits. The dfr promoter-uidA gene fusion was expressed in leaves, roots and stems. Deletions of the dfr promoter influenced the specificity of the expression of the GUS gene fusion in plantlet roots and the level of expression in plants and in the red cell suspension originated from fruits. The deletion analysis of the dfr promoter suggests that a specific sequence located between -725 to -233 might be involved in expression of the dfr gene in fruits. Light, calcium and sucrose induced the dfr gene expression. In the transformed suspension cultures, expression of both the endogenous dfr gene and the dfr promoter-uidA gene fusions was induced by white light. The induction by both light and calcium suggests the possible involvement of a UV receptors signal transduction pathway in the induction of the dfr gene. The induction of the dfr gene and the dfr promoter-uidA gene fusions by light and sucrose indicates a close interaction between sucrose and light signalling pathways.  (+info)

Allometric relationships to estimate seasonal above-ground vegetative and reproductive biomass of Vitis vinifera L. (15/968)

A procedure is described for obtaining allometric regression equations to estimate non-destructively and in a cost-effective manner the current year's above-ground vegetative and reproductive biomass of Vitis vinifera L. Merlot' throughout the growing season. Significant relationships were obtained over a 3-year period (1998-2000) between the dimensions of an individual shoot per vine (i.e. diameter and length) and dry weights of its primary stem, primary leaves and lateral growth. The dry mass of a grape was best estimated from measurements of the basal diameter of the bunch peduncle. Introducing cumulative degree-days as an additional explanatory variable in the equations allowed them to be used irrespective of year and growth stage. Multi-year regressions were used to quantify in detail the seasonal evolution of mature grapevine biomass under the climatic conditions of the Bordeaux area, France, and for differing levels of soil nitrogen.  (+info)

Disparate in vitro and in vivo antileukemic effects of resveratrol, a natural polyphenolic compound found in grapes. (16/968)

Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenol found in grapes and grape wine, has been reported to exhibit cardioprotective and chemopreventive activity against chemical carcinogenesis. It has also been shown to have growth inhibitory activity toward solid tumors in vivo. However, the antitumor activity of resveratrol against hematologic tumors in vivo has not been examined. In this study, the antileukemic activity of resveratrol in vitro and in vivo was examined using a mouse myeloid leukemia cell line (32Dp210). Treatment of 32Dp210 leukemia cells with resveratrol at micromolar concentrations (25-50 micromol/L) significantly and irreversibly inhibited their clonal growth in vitro. The clonal growth inhibition by resveratrol was associated with extensive cell death and an increase in hypodiploid (sub-G1) cells. Resveratol caused internucleosomal DNA fragmentation, suggesting apoptosis as the mode of cell death in 32Dp210 cells. DNA fragmentation was associated with activation of caspase-3, because cleavage of procaspase-3 was detected in resveratrol-treated cells. Although 32Dp210 cells treated with resveratrol in vitro did not produce leukemia in vivo, only a weak antileukemic effect of resveratrol was observed when administered orally. At doses of 8 mg or 40 mg/kg body daily, five times/wk, resveratrol did not affect the survival of mice injected with leukemia cells. Weak potential antileukemic activity of resveratrol was suggested only at a dose of 80 mg/kg body (2 survivors of 14 mice treated). Thus, despite strong antiproliferative and proapoptotic activities of resveratrol against 32Dp210 cells in vitro, a potential antileukemia effect in vivo, if present, occurs only in a small fraction of mice.  (+info)