Iodinated radiographic contrast media inhibit shear stress- and agonist-evoked release of NO by the endothelium. (33/2691)

1 We have used isolated arterial preparations from the rabbit and dog to investigate whether non-ionic iodinated radiographic contrast media (IRCM) modulate nitric oxide (NO) release. The tri-iodinated monomers iopromide and iohexol were compared with the hexa-iodinated dimer iodixanol. 2 The vasodilator effects of iohexol (300 mg ml-1) and iodixanol (320 mg ml-1) were assessed in cascade bioassay. Increasing concentrations of iohexol or iodixanol caused concentration-dependent relaxations of the detector tissue which were insensitive to 100 microM NG-nitro L-arginine methyl ester (L-NAME) and 10 microM indomethacin, whereas viscosity-associated relaxations induced by the 'inert' agent dextran (MW 80,000; 1-4%) were attenuated by inhibition of NO synthesis. 3 Relaxations of endothelium-intact rings to acetylcholine (ACh) were attenuated by preincubation with iohexol or iodixanol, whereas relaxations to sodium nitroprusside (SNP) in endothelium-denuded rings were unaffected. Inhibitory activity did not correlate with either molarity or iodine concentration. Mannitol caused inhibition of both ACh- and SNP-induced responses. 4 In isolated perfused arteries the depressor responses to iodixanol (320 mg ml-1) and iopromide (300 mg ml-1) administered as close arterial bolus attained a plateau with maximal dilatations of approximately 25% and approximately 60%, respectively. Addition of 100 microM NG-nitro L-arginine (L-NOARG) and/or 10 microM indomethacin to the perfusate had no effect on the responses to either agent. 5 We conclude that IRCM exert direct effects on the endothelium that inhibit NO production rather than its action on vascular smooth muscle. Shear stress-induced stimulation of NO production by IRCM is unlikely to contribute to their vasodilator activity in vivo when administered during angiography despite high intrinsic viscosity.  (+info)

The effect of S-layer protein adsorption and crystallization on the collective motion of a planar lipid bilayer studied by dynamic light scattering. (34/2691)

A dedicated dynamic light scattering (DLS) setup was employed to study the undulations of freely suspended planar lipid bilayers, the so-called black lipid membranes (BLM), over a previously inaccessible spread of frequencies (relaxation times ranging from 10(-2) to 10(-6) s) and wavevectors (250 cm(-1) < q < 38,000 cm(-1)). For a BLM consisting of 1,2-dielaidoyl-sn-3-glycero-phosphocholine (DEPC) doped with two different proportions of the cationic lipid analog dioctadecyl-dimethylammonium bromide (DODAB) we observed an increase of the lateral tension of the membrane with the DODAB concentration. The experimentally determined dispersion behavior of the transverse shear mode was in excellent agreement with the theoretical predictions of a first-order hydrodynamic theory. The symmetric adsorption of the crystalline bacterial cell surface layer (S-layer) proteins from Bacillus coagulans E38-66 to a weakly cationic BLM (1.5 mol % DODAB) causes a drastic reduction of the membrane tension well beyond the previous DODAB-induced tension increase. The likely reason for this behavior is an increase of molecular order along the lipid chains by the protein and/or partial protein penetration into the lipid headgroup region. S-layer protein adsorption to a highly cationic BLM (14 mol % DODAB) shows after 7 h incubation time an even stronger decrease of the membrane tension by a factor of five, but additionally a significant increase of the (previously negligible) surface viscosity, again in excellent agreement with the hydrodynamic theory. Further incubation (24 h) shows a drastic increase of the membrane bending energy by three orders of magnitude as a result of a large-scale, two-dimensional recrystallization of the S-layer proteins at both sides of the BLM. The results demonstrate the potential of the method for the assessment of the different stages of protein adsorption and recrystallization at a membrane surface by measurements of the collective membrane modes and their analysis in terms of a hydrodynamic theory.  (+info)

Desmin filaments studied by quasi-elastic light scattering. (35/2691)

We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate.  (+info)

Viscoelastic studies on Tetrahymena macronuclear DNA. (36/2691)

We have used viscoelastometry in an attempt to understand the physical organization of genetic material in Tetrahymena nuclei. The micronucleus or germ line nucleus is diploid. It divides mitotically during vegetative growth, and five pairs of chromosomes are seen in meiosis. The macronucleus, or somatic nucleus, is approximately 45-ploid, divides amitotically, and has no visible chromosomes at any stage. Viscoelastic analysis of Tetrahymena macronuclei reveals DNA Molecules of 2-3 X 10(10) daltons accounting for much, if not all, of the macronuclear DNA. Since the average chromosome in the micronucleus contains 2.4-2.7 X 10(10) daltons of DNA, we deduce that the macronucleus of Tetrahymena contains chromosome-sized DNA molecules.  (+info)

Molten globule-like state of human serum albumin at low pH. (37/2691)

Human serum albumin (HSA), under conditions of low pH, is known to exist in two isomeric forms, the F form at around pH 4.0 and the E form below 3.0. We studied its conformation in the acid-denatured E form using far-UV and near-UV CD, binding of a hydrophobic probe, 1-anilinonaphthalene-8-sulfonic acid (ANS), thermal transition by far-UV and near-UV CD, tryptophan fluorescence, quenching of tryptophan fluorescence using a neutral quencher, acrylamide and viscosity measurements. The results show that HSA at pH 2.0 is characterized by a significant amount of secondary structure, as evident from far-UV CD spectra. The near-UV CD spectra showed a profound loss of tertiary structure. A marked increase in ANS fluorescence signified extensive solvent exposure of non-polar clusters. The temperature-dependence of both near-UV and far-UV CD signals did not exhibit a co-operative thermal transition. The intrinsic fluorescence and acrylamide quenching of the lone tryptophan residue, Trp214, showed that, in the acid-denatured state, it is buried in the interior in a non-polar environment. Intrinsic viscosity measurements showed that the acid-denatured state is relatively compact compared with that of the denatured state in 7 M guanidine hydrochloride. These results suggest that HSA at pH 2.0 represents the molten globule state, which has been shown previously for a number of proteins under mild denaturing conditions.  (+info)

Modeling expiratory flow from excised tracheal tube laws. (38/2691)

Flow limitation during forced exhalation and gas trapping during high-frequency ventilation are affected by upstream viscous losses and by the relationship between transmural pressure (Ptm) and cross-sectional area (A(tr)) of the airways, i.e., tube law (TL). Our objective was to test the validity of a simple lumped-parameter model of expiratory flow limitation, including the measured TL, static pressure recovery, and upstream viscous losses. To accomplish this objective, we assessed the TLs of various excised animal tracheae in controlled conditions of quasi-static (no flow) and steady forced expiratory flow. A(tr) was measured from digitized images of inner tracheal walls delineated by transillumination at an axial location defining the minimal area during forced expiratory flow. Tracheal TLs followed closely the exponential form proposed by Shapiro (A. H. Shapiro. J. Biomech. Eng. 99: 126-147, 1977) for elastic tubes: Ptm = K(p) [(A(tr)/A(tr0))(-n) - 1], where A(tr0) is A(tr) at Ptm = 0 and K(p) is a parametric factor related to the stiffness of the tube wall. Using these TLs, we found that the simple model of expiratory flow limitation described well the experimental data. Independent of upstream resistance, all tracheae with an exponent n < 2 experienced flow limitation, whereas a trachea with n > 2 did not. Upstream viscous losses, as expected, reduced maximal expiratory flow. The TL measured under steady-flow conditions was stiffer than that measured under expiratory no-flow conditions, only if a significant static pressure recovery from the choke point to atmosphere was assumed in the measurement.  (+info)

Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer. (39/2691)

Skin viscoelasticity was evaluated by a fast, noninvasive assay based on the measurement of the speed of elastic shear wave propagation in the skin by a new portable and user-friendly viscoelasticity skin analyzer. The range of speed of elastic shear wave propagation measured by viscoelasticity skin analyzer allows the evaluation of the stiffness of a wide spectrum of artificial materials as well as the viscoelasticity of skin of laboratory animals and human subjects. The directional nature of the measurement enables to monitor the anisotropy of the materials tested. The speed of elastic shear wave propagation was shown to have a positive correlation with the stiffness of the material tested. In symmetric contralateral areas of intact skin in rabbit ears, similar viscoelasticity and anisotropy were observed. Twenty-four hours after the induction of local edema by croton oil, skin stiffness and anisotropy were significantly increased. In healthy human subjects of both sexes significant variations in skin stiffness and anisotropy were observed in three different skin areas along the forearms, but the speed of elastic shear wave propagation was similar in the symmetric contralateral areas. Age (17-65 y) seemed to have a limited effect on the viscoelasticity of the forearm skin. Hydrating creams decreased the stiffness of the forearm skin for only approximately 3 h. The stiffness and anisotropy of the skin of the breasts in female volunteers (20-86 y) increased with age, but the speed of elastic shear wave propagation was similar in symmetric contralateral areas in the same individuals. Based on these results, we propose the application of the viscoelasticity skin analyzer in experimental and clinical practice for quantitative evaluation of skin condition.  (+info)

Cationic porphyrins bearing diazolium rings: synthesis and their interaction with calf thymus DNA. (40/2691)

Two novel cationic porphyrins bearing five-membered rings at the meso-positions, meso-tetrakis(1,3-dimethylimidazolium-2-yl)porphyrin (H2TDMImP) and meso-tetrakis(1,2-dimethylpyrazolium-4-yl)porphyrin (H2TDMPzP), have been synthesized. These two compounds interact with calf thymus DNA (CTDNA) in different binding modes from that of mesotetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP). H2TDMImP outside binds to the minor groove of CTDNA while H2TDMPzP intercalates into CTDNA. These two novel cationic porphyrins strongly bind to CTDNA even at high ionic strength and the binding constant of H2TDMPzP to CTDNA is comparable to that of H2TMPyP. The binding of H2TDMImP to CTDNA is enthalpically driven. The favorable free energy changes in binding of H2TDMPzP to CTDNA come from the large negative enthalpy changes accompanied by small positive entropy changes.  (+info)