Mouse mammary tumor virus carrying a bacterial supF gene has wild-type pathogenicity and enables rapid isolation of proviral integration sites. (57/1731)

Mouse mammary tumor virus (MMTV) has frequently been used as an insertional mutagen to identify provirally activated mammary proto-oncogenes. To expedite and facilitate the process of cloning MMTV insertion sites, we have introduced a bacterial supF suppressor tRNA gene into the long terminal repeat (LTR) of MMTV, thus allowing selection of clones containing it in lambda vectors bearing amber mutations. The presence of supF in the LTR should circumvent the screening process for proviral insertion sites, since only those lambda clones with supF-containing proviral-cellular junction fragments should be able to form plaques on a lawn of wild-type Escherichia coli (i.e., lacking supF). The resulting virus (MMTVsupF) induced mammary tumors at the expected rate in infected mice, deleted the appropriate T-cell population by virtue of its superantigen gene, and stably retained the supF gene after passage via the milk to female offspring. To test the selective function of the system, size-selected DNA containing two proviral-cellular junction fragments from an MMTV supF-induced mammary tumor was ligated into lambdagtWES.lambdaB, packaged, and plated on a supF-deficient bacterial host for selection of supF-containing clones. All plaques tested contained the desired cloned fragments, thus demonstrating the utility of this modified provirus for the rapid cloning of MMTV insertion sites.  (+info)

The latency-associated nuclear antigen tethers the Kaposi's sarcoma-associated herpesvirus genome to host chromosomes in body cavity-based lymphoma cells. (58/1731)

Viruses that establish latent infection must maintain their DNA in the host nucleus through many cellular generations. Here we identify a novel mechanism by which the gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) may achieve this persistence in latently infected body cavity-based lymphoma (BCBL) cells. We find that KSHV genomic DNA is associated with host chromosomes and colocalizes with the latency-associated nuclear antigen (LANA). Furthermore, a region at the left end of the KSHV genome binds strongly to LANA and can colocalize to the host chromosomes with LANA. Additionally, we found that LANA associates with histone H1 in KSHV-infected BCBL cells. We propose that this chromosomal association of the KSHV genome is mediated by LANA and involves a tethering mechanism by which viral episomes are linked to host chromatin through simultaneous interaction with host chromosomal proteins including histone H1 and cis-acting KSHV DNA elements. This strategy may be employed by other viruses in establishment of latency in the infected cells.  (+info)

RET: a poly A-trap retrovirus vector for reversible disruption and expression monitoring of genes in living cells. (59/1731)

Gene trapping is a form of insertional mutagenesis that causes disruption of gene function. Here we report the construction and extensive examination of a versatile retrovirus vector, RET (removable exon trap). The RET vector uses an improved poly A-trap strategy for the efficient identification of functional genes regardless of their expression status in target cells. A combination of a potentially very strong splice acceptor and an effective polyadenylation signal assures the complete disruption of the function of trapped genes. Inclusion of a promoterless GFP cDNA in the RET vector allows the expression pattern of the trapped gene to be easily monitored in living cells. Finally, because of loxP-containing LTRs at both ends, the integrated proviruses can be removed from the genome of infected cells by Cre-mediated homologous recombination. Hence, it is possible to attribute the mutant phenotype of gene-trapped cells directly to RET integration by inducing phenotypic reversion after provirus excision. The RET system can be used in conjunction with cell lines with functional heterozygosity, embryonic stem cells, lineage-committed cell lines that differentiate in response to specific inducing factors and other responsive cell lines that can be selected by virtue of their induced green fluorescence protein expression.  (+info)

Retroviral DNA integration. (60/1731)

DNA integration is a unique enzymatic process shared by all retroviruses and retrotransposons. During integration, double-stranded linear viral DNA is inserted into the host genome in a process catalyzed by the virus-encoded integrase (IN). The mechanism involves a series of nucleophilic attacks, the first of which removes the terminal 2 bases from the 3' ends of the long terminal repeats and of the second which inserts the viral DNA into the host genome. IN specifically recognizes the DNA sequences at the termini of the viral DNA, juxtaposing both ends in an enzyme complex that inserts the viral DNA into a single site in a concerted manner. Small duplications of the host DNA, characteristic of the viral IN, are found at the sites of insertion. At least two host proteins, HMG-I(Y) and BAF, have been shown to increase the efficiency of the integration reaction.  (+info)

Conditional site-specific integration into human chromosome 19 by using a ligand-dependent chimeric adeno-associated virus/Rep protein. (61/1731)

It is of great interest for gene therapy to develop vectors that drive the insertion of a therapeutic gene into a chosen specific site on the cellular genome. Adeno-associated virus (AAV) is unique among mammalian viruses in that it integrates into a distinct region of human chromosome 19 (integration site AAVS1). The inverted terminal repeats (ITRs) flanking the AAV genome and the AAV-encoded nonstructural proteins Rep78 and/or Rep68 are the only viral elements necessary and sufficient for site-specific integration. However, it is also known that unrestrained Rep activity may cause nonspecific genomic rearrangements at AAVS1 and/or have detrimental effects on cell physiology. In this paper we describe the generation of a ligand-dependent form of Rep, obtained by fusing a C-terminally deleted Rep68 with a truncated form of the hormone binding domain of the human progesterone receptor, which does not bind progesterone but binds only its synthetic antagonist RU486. The activity of this chimeric protein, named Rep1-491/P, is highly dependent on RU486 in various assays: in particular, it triggers site-specific integration at AAVS1 of an ITR-flanked cassette in a ligand-dependent manner, as efficiently as wild-type Rep68 but without generating unwanted genomic rearrangement at AAVS1.  (+info)

Nuclear import of moloney murine leukemia virus DNA mediated by adenovirus preterminal protein is not sufficient for efficient retroviral transduction in nondividing cells. (62/1731)

Moloney murine leukemia virus (MoMLV)-derived vectors require cell division for efficient transduction, which may be related to an inability of the viral DNA-protein complex to cross the nuclear membrane. In contrast, adenoviruses (Ad) can efficiently infect nondividing cells. This property may be due to the presence of multiple nuclear translocation signals in a number of Ad proteins, which are associated with the incoming viral genomes. Of particular interest is the Ad preterminal protein (pTP), which binds alone or in complex with the Ad polymerase to specific sequences in the Ad inverted terminal repeat. The goal of this study was to test whether coexpression of pTP with retroviral DNA carrying pTP-binding sites would facilitate nuclear import of the viral preintegration complex and transduction of quiescent cells. In preliminary experiments, we demonstrated that the karyophylic pTP can coimport plasmid DNA into the nuclei of growth-arrested cells. Retroviral transduction studies were performed with G(1)/S-arrested LTA cells or stationary-phase human primary fibroblasts. These studies demonstrated that pTP or pTP-Ad polymerase conferred nuclear import of retroviral DNA upon arrested cells when the retrovirus vector contained the corresponding binding motifs. However, pTP-mediated nuclear translocation of MoMLV DNA in nondividing cells was not sufficient for stable transduction. Additional cellular factors activated during S phase or DNA repair synthesis were required for efficient retroviral integration.  (+info)

Diminished human immunodeficiency virus type 1 reverse transcription and nuclear transport in primary macrophages arrested in early G(1) phase of the cell cycle. (63/1731)

Previously, we and others have demonstrated that the process of reverse transcription of human immunodeficiency virus type 1 (HIV-1) is disturbed in nondividing macrophages and quiescent T lymphocytes. Here we analyzed which phase of the cell cycle in macrophages is crucial for early steps in the HIV-1 replication cycle. HIV-1 Ba-L-inoculated macrophages arrested early in the G(1) phase by n-butyrate contained incomplete products of reverse transcription. In gamma-irradiated macrophages, reverse transcription was successfully completed but proviral integration could not be detected. In these cells, nuclear import was disturbed as reflected by the absence of two-long-terminal-repeat circles. In macrophages arrested late in G(1) phase by aphidicolin or 5, 6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB), reverse transcription was unaffected. Proviral integration occurred efficiently in DRB-treated macrophages, whereas integrated proviral DNA could not be detected after aphidicolin treatment. Arrest at G(2) phase of the cell cycle by nocodazole did not affect reverse transcription or proviral integration. Treatment of macrophages with hydroxyurea (HU), which reduces the intracellular deoxynucleoside triphosphate (dNTP) pool by blocking the de novo synthesis of dNTP, resulted in a dose-dependent inhibition of HIV-1 reverse transcription. This could partially be restored by the addition of nucleoside precursors. Addition of nucleoside precursors enhanced both reverse transcription and cell proliferation. However, the disturbed reverse transcription observed in the nonproliferating and n-butyrate-treated macrophages could not be restored by addition of nucleoside precursors. Similar to observations in quiescent T lymphocytes, incomplete proviral DNA species were arrested in the cytoplasm of the macrophages. Our results indicate that also in primary macrophages the intracellular nucleotide pools and other cellular factors that coincide with late G(1) phase of the cell cycle may contribute to efficient reverse transcription and nuclear localization.  (+info)

Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells. (64/1731)

Foamy viruses are complex retroviruses whose replication strategy resembles that of conventional retroviruses. However, foamy virus replication also resembles that of hepadnaviruses in many respects. Because hepadnaviruses replicate in an integrase-independent manner, we were interested in investigating the characteristics of human foamy virus (HFV) integration. We have shown that HFV requires a functional integrase protein for infectivity. Our analyses have revealed that in single-cell clones derived from HFV-infected erythroleukemia-derived cells (H92), there were up to 20 proviral copies per host cell genome as determined by Southern blot and fluorescent in situ hybridization analysis. Use of specific probes has also shown that a majority of the proviruses contain the complete tas gene, which encodes the viral transactivator, and are not derived from Deltatas cDNAs, which have been shown to arise rapidly in infected cells. To demonstrate that the multiple proviral sequences are due to integration instead of recombination, we have sequenced the junctions between the proviral sequences and the host genome and found that the proviruses have authentic long terminal repeat ends and that each integration is at a different chromosomal site. A virus lacking the Gag nuclear localization signal accumulates fewer proviruses, suggesting that nuclear translocation is important for high proviral load. Since persistently infected H92 clones are not resistant to superinfection, the relative importance of an intracellular versus extracellular mechanism in proviral acquisition has yet to be determined.  (+info)