Inactivation of a norovirus by high-pressure processing. (49/215)

Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20 degrees C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log(10) PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5 degrees C; a 5-min pressure treatment of 350 MPa at 30 degrees C inactivated 1.15 log(10) PFU of virus, while the same treatment at 5 degrees C resulted in a reduction of 5.56 log(10) PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5 degrees C and 20 degrees C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5 degrees C was sufficient to inactivate 4.05 log(10) PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.  (+info)

Thermostabilizing mutations in reovirus outer-capsid protein mu1 selected by heat inactivation of infectious subvirion particles. (50/215)

The 76-kDa mu1 protein of nonfusogenic mammalian reovirus is a major component of the virion outer capsid, which contains 200 mu1 trimers arranged in an incomplete T=13 lattice. In virions, mu1 is largely covered by a second major outer-capsid protein, sigma3, which limits mu1 conformational mobility. In infectious subvirion particles, from which sigma3 has been removed, mu1 is broadly exposed on the surface and can be promoted to rearrange into a protease-sensitive and hydrophobic conformer, leading to membrane perforation or penetration. In this study, mutants that resisted loss of infectivity upon heat inactivation (heat-resistant mutants) were selected from infectious subvirion particles of reovirus strains Type 1 Lang and Type 3 Dearing. All of the mutants were found to have mutations in mu1, and the heat-resistance phenotype was mapped to mu1 by both recoating and reassortant genetics. Heat-resistant mutants were also resistant to rearrangement to the protease-sensitive conformer of mu1, suggesting that heat inactivation is associated with mu1 rearrangement, consistent with published results. Rate constants of heat inactivation were determined, and the dependence of inactivation rate on temperature was consistent with the Arrhenius relationship. The Gibbs free energy of activation was calculated with reference to transition-state theory and was found to be correlated with the degree of heat resistance in each of the analyzed mutants. The mutations are located in upper portions of the mu1 trimer, near intersubunit contacts either within or between trimers in the viral outer capsid. We propose that the mutants stabilize the outer capsid by interfering with unwinding of the mu1 trimer.  (+info)

Incorporation of chimeric HIV-SIV-Env and modified HIV-Env proteins into HIV pseudovirions. (51/215)

Low level incorporation of the viral glycoprotein (Env) into human immunodeficiency virus (HIV) particles is a major drawback for vaccine strategies against HIV/AIDS in which HIV particles are used as immunogen. Within this study, we have examined two strategies aimed at achieving higher levels of Env incorporation into non-infectious pseudovirions (PVs). First, we have generated chimeric HIV/SIV Env proteins containing the truncated C-terminal tail region of simian immunodeficiency virus (SIV)mac239-Env767(stop), which mediates strongly increased incorporation of SIV-Env into SIV particles. In a second strategy, we have employed a truncated HIV-Env protein (Env-Tr752(N750K)) which we have previously demonstrated to be incorporated into HIV virions, generated in infected T-cells, to a higher level than that of Wt-HIV-Env. Although the chimeric HIV/SIV Env proteins were expressed at the cell surface and induced increased levels of cell-cell fusion in comparison to Wt-HIV-Env, they did not exhibit increased incorporation into either HIV-PVs or SIV-PVs. Only Env-Tr752(N750K) exhibited significantly higher (threefold) levels of incorporation into HIV-PVs, an improvement, which, although not dramatic, is worthwhile for the large-scale preparation of non-infectious PVs for vaccine studies aimed at inducing Env humoral responses.  (+info)

Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. (52/215)

UV-inactivated, replication-defective Sendai virus particles [hemagglutinating virus of Japan envelope (HVJ-E)] injected into murine colon carcinoma (CT26) tumors growing in syngeneic BALB/c mice eradicated 60% to 80% of the tumors and obviously inhibited the growth of the remainder. Induced adaptive antitumor immune responses were dominant in the tumor eradication process because the effect was abrogated in severe combined immunodeficient mice. Murine and human dendritic cells underwent dose-dependent maturation by HVJ-E in vitro. Profiles of cytokines secreted by dendritic cells after HVJ-E stimulation showed that the amount of interleukin-6 (IL-6) released was comparable to that elicited by live HVJ. Real-time reverse transcription-PCR and immunohistochemistry revealed that HVJ-E induced a remarkable infiltration of dendritic cells and CD4+ and CD8+ T cells into tumors. In addition, CT26-specific CTLs were induced with the evidence of enhanced CD8+ T-cell activation in a CD4+CD25- T cell-dependent manner. On the other hand, conditioned medium from dendritic cells stimulated by HVJ-E rescued CD4+CD25- effector T-cell proliferation from Foxp3+CD4+CD25+ regulatory T cell (Treg)-mediated suppression and IL-6 was presumably dominant for this phenomenon. We also confirmed such rescue in mice treated with HVJ-E in vivo. Moreover, antitumor effect of HVJ-E was significantly reduced by an in vivo blockade of IL-6 signaling. This is the first report to show that HVJ-E alone can eradicate tumors and the mechanism through which it induces antitumor immune responses. Because it can enhance antitumor immunity and simultaneously remove Treg-mediated suppression, HVJ-E shows promise as a novel therapeutic for cancer immunotherapy.  (+info)

Inactivation and purification of cowpea mosaic virus-like particles displaying peptide antigens from Bacillus anthracis. (53/215)

Chimeric cowpea mosaic virus (CPMV) particles displaying foreign peptide antigens on the particle surface are suitable for development of peptide-based vaccines. However, commonly used PEG precipitation-based purification methods are not sufficient for production of high quality vaccine candidates because they do not allow for separation of chimeric particles from cleaved contaminating species. Moreover, the purified particles remain infectious to plants. To advance the CPMV technology further, it is necessary to develop efficient and scalable purification strategies and preferably eliminate the infectivity of chimeric viruses. CPMV was engineered to display a 25 amino acid peptide derived from the Bacillus anthracis protective antigen on the surface loop of the large coat protein subunit. The engineered virus was propagated in cowpea plants and assembled into chimeric virus particles displaying 60 copies of the peptide on the surface. An effective inactivation method was developed to produce non-infectious chimeric CPMV virus-like particles (VLPs). Uncleaved VLPs were separated from the contaminating cleaved forms by anion exchange chromatography. The yield of purified chimeric VLPs was 0.3 g kg(-1) of leaf tissue. The results demonstrate the ability to generate multi-gram quantities of non-infectious, chimeric CPMV VLPs in plants for use in the development of peptide-based vaccines.  (+info)

Inactivation of influenza A virus on copper versus stainless steel surfaces. (54/215)

Influenza A virus particles (2 x 10(6)) were inoculated onto copper or stainless steel and incubated at 22 degrees C at 50 to 60% relative humidity. Infectivity of survivors was determined by utilizing a defined monolayer with fluorescent microscopy analysis. After incubation for 24 h on stainless steel, 500,000 virus particles were still infectious. After incubation for 6 h on copper, only 500 particles were active.  (+info)

A single M protein mutation affects the acid inactivation threshold and growth kinetics of a chimeric flavivirus. (55/215)

Numerous viruses of the Flaviviridae family, including dengue, yellow fever, Japanese encephalitis, and West Nile, cause significant disease in humans and animals. The structure and function of the molecular components of the flavivirus envelope are therefore of significant interest. To our knowledge, a membrane (M) protein mutation which affects the pH at which flavivirus particles are inactivated in vitro has never been reported. Here we show that substitution of proline for glutamine at residue M5 (MQ5P) of a Japanese encephalitis-yellow fever chimera (ChimeriVax-JE) increases its acid sensitivity in vitro by 0.3 pH units (i.e., increases the pH at which virus titer is reduced by 50% from 6.08 to 6.38). In addition, growth kinetics of this mutant virus are accelerated in Vero cells, while neurovirulence and neuroinvasiveness measured in a mouse model are unaffected. A possible interpretation of these observations is that M can modulate the envelope (E) protein function during cell infection.  (+info)

Glycoprotein Ibalpha promoter drives megakaryocytic lineage-restricted expression after hematopoietic stem cell transduction using a self-inactivating lentiviral vector. (56/215)

Megakaryocytic (MK) lineage is an attractive target for cell/gene therapy approaches, aiming at correcting platelet protein deficiencies. However, MK cells are short-lived cells, and their permanent modification requires modification of hematopoietic stem cells with an integrative vector such as a lentiviral vector. Glycoprotein (Gp) IIb promoter, the most studied among the MK regulatory sequences, is also active in stem cells. To strictly limit transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells with a lentiviral vector, we looked for a promoter activated later during MK differentiation. Human cord blood, bone marrow, and peripheral-blood mobilized CD34(+) cells were transduced with a human immunodeficiency virus-derived self-inactivating lentiviral vector encoding the green fluorescent protein (GFP) under the transcriptional control of GpIbalpha, GpIIb, or EF1alpha gene regulatory sequences. Both GpIbalpha and GpIIb promoters restricted GFP expression (analyzed by flow cytometry and immunoelectron microscopy) in MK cells among the maturing progeny of transduced cells. However, only the GpIbalpha promoter was strictly MK-specific, whereas GpIIb promoter was leaky in immature progenitor cells not yet engaged in MK cell lineage differentiation. We thus demonstrate the pertinence of using a 328-base-pair fragment of the human GpIbalpha gene regulatory sequence, in the context of a lentiviral vector, to tightly restrict transgene expression to the MK lineage after transduction of human CD34(+) hematopoietic cells. Disclosure of potential conflicts of interest is found at the end of this article.  (+info)