Mutational analysis, using a full-length rubella virus cDNA clone, of rubella virus E1 transmembrane and cytoplasmic domains required for virus release. (33/2943)

We report on the construction of a full-length cDNA clone, pBRM33, derived from wild-type rubella virus M33 strain. The RNA transcripts synthesized in vitro from pBRM33 are highly infectious, and the viruses produced retain the phenotypic characteristics of the parental M33 virus in growth rate and plaque size. This cDNA clone was used to study the role of E1 transmembrane and cytoplasmic domains in virus assembly by site-directed mutagenesis. Three different alanine substitutions were introduced in the transmembrane domain of E1. These included substitution of leucine 464, cysteine 466, cysteine 467, and both cysteines 466 and 467 to alanine. In the E1 cytoplasmic domain, cysteine 470 and leucine 471 were altered to alanine. We found that these mutations did not significantly affect viral RNA replication, viral structural protein synthesis and transport, or E2/E1 heterodimer formation. Except for the substitution of cysteine 470, these mutations did, however, lead to a reduction in virus release. Substitution of cysteine 467 in the transmembrane region and of leucine 471 in the cytoplasmic domain dramatically reduced virus yield, resulting in the production of only 1 and 10% of the parental virus yield, respectively, in a parallel infection. These data show that E1 transmembrane and cytoplasmic domains play an important role in late stages of virus assembly, possibly during virus budding, consistent with earlier studies indicating that the E1 cytoplasmic domain may interact with nucleocapsids and that this interaction drives virus budding.  (+info)

Proline residues in human immunodeficiency virus type 1 p6(Gag) exert a cell type-dependent effect on viral replication and virion incorporation of Pol proteins. (34/2943)

The C terminus of the HIV-1 Gag protein contains a proline-rich domain termed p6(Gag). This domain has been shown to play a role in efficient virus release and incorporation of Vpr into virions. In a previous study (X. F. Yu, L. Dawson, C. J. Tian, C. Flexner, and M. Dettenhofer, J. Virol. 72:3412-3417, 1998), we observed that the removal of the p6 domain of Gag as well as drastic mutations in the PTAP motif resulted in reduced virion-associated Pol proteins from transfected COS cells. In the present study, amino acid substitutions at residues 5 and 7 of p6(Gag) resulted in a cell type-dependent replication of the mutant virus in CD4(+) T cells; the virus was replication competent in Jurkat cells but restricted in H9 cells and primary blood-derived monocytes. Established Jurkat and H9 cell lines expressing p6(Gag) mutant and parental virus were used to further understand this defect. Mutant virions produced from H9 cells, which displayed no defect in extracellular virion production, showed an approximately 16-fold reduction in Pol protein levels, whereas the levels of Pol proteins were only marginally reduced in mutant virions produced from Jurkat cells. The reduction in the virion-associated Pol proteins could not be accounted for by differences in the levels of intracellular p160(Gag-Pol) or in the interaction between p55(Gag) and p160(Gag-Pol) precursors. Electron microscopic analysis of the p6(Gag) mutant virions showed a predominately immature morphology in the absence of significant defects in Gag proteolytic cleavage. Taken together, these data suggest that the proline-rich motif of p6(Gag) is involved in the late stages of virus maturation, which include the packaging of cleaved Pol proteins in viral particles, a process which may involve cell-type-specific factors.  (+info)

Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. (35/2943)

The development of gene delivery vectors based on feline immunodeficiency virus (FIV) is an attractive alternative to vectors based on primate sources for the delivery of genes into humans. To investigate the requirements for efficient transduction of dividing and nondividing cells by vector particles based on FIV, a series of packaging and vector constructs was generated for which viral gene expression was minimized and from which unnecessary cis-acting sequences were deleted. Pseudotyped vector particles produced in 293T cells were used to transduce various target cells, including contact-inhibited human skin fibroblasts and growth-arrested HT1080 cells. FIV vectors in which the U3 promoter was replaced with the cytomegalovirus promoter gave rise to over 50-fold-higher titers than FIV vectors containing the complete FIV 5' long terminal repeat (LTR). Comparison of the transduction efficiencies of vectors containing different portions of the FIV Gag coding region indicates that at least a functional part of the FIV packaging signal (Psi) is located within an area which includes the 5' LTR and the first 350 bp of gag. Transduction efficiencies of vectors prepared without FIV vif and orf2 accessory gene expression did not differ substantially from those of vectors prepared with accessory gene expression in either dividing or nondividing cells. The requirement for FIV rev-RRE was, however, demonstrated by the inefficient production of vector particles in the absence of rev expression. Together, these results demonstrate the efficient transduction of nondividing cells in vitro by a multiply attenuated FIV vector and contribute to an understanding of the minimum requirements for efficient vector production and infectivity. In addition, we describe the ability of an FIV vector to deliver genes in vivo into hamster muscle tissue.  (+info)

Intracellular transport and maturation pathway of human herpesvirus 6. (36/2943)

A peculiar characteristic of cells infected with human herpesvirus 6 (HHV6) is the absence of viral glycoproteins on the plasma membrane, which may reflect an atypical intracellular transport of the virions and/or the viral glycoproteins, different from that of the other members of the herpesvirus family. To investigate the maturation pathway of HHV-6 in the human T lymphoid cell line HSB-2, we used lectin cytochemistry and immunogold labeling combined with several electron microscopical techniques, such as ultrathin frozen sections, postembedding, and fracture-label. Immunolabeling with anti-gp116 and anti-gp82-gp105 monoclonal antibodies revealed that the viral glycoproteins are undetectable on nuclear membranes and that at the inner nuclear membrane nucleocapsids acquire a primary envelope lacking viral glycoproteins. After de-envelopment, cytoplasmic nucleocapsids acquire a thick tegument and a secondary envelope with viral glycoproteins at the level of neo-formed annulate lamellae or at the cis-side of the Golgi complex. Cytochemical labeling using helix pomatia lectin revealed that the newly acquired secondary viral envelopes contain intermediate forms of glycocomponents, suggesting a sequential glycosylation of the virions during their transit through the Golgi area before their final release into the extracellular space. Immunogold labeling also showed that the viral glycoproteins, which are not involved in the budding process, reach and accumulate in the endosomal/lysosomal compartment. Pulse-chase analysis indicated degradation of the gp116, consistent with its endosomal localization and with the absence of viral glycoproteins on the cell surface of the infected cells.  (+info)

The polysulfonated compound suramin blocks adsorption and lateral difusion of herpes simplex virus type-1 in vero cells. (37/2943)

Several polysulfonate compounds have been shown to have the potential to inhibit the replication of herpesviruses by blocking binding and penetration of the host cell. We analyzed the actions of the polysulfonate compound suramin on the replication of herpes simplex virus type 1 (HSV-1) and compared them with the actions of heparin. We used the expression of a reporter gene (beta-galactosidase) recombined into the latency-associated transcript region of the 17syn+ strain of HSV-1 to quickly evaluate productive cycle activity and have shown that it can be directly correlated with virus replication under the conditions used. We find that suramin, like heparin, blocks the binding of HSV-1 to the cell membrane. Also, suramin efficiently blocks the cell-to-cell spread of the virus; this effect has not been previously reported. Our control experiments demonstrate that heparin also has some effect on intercellular spread of HSV-1 but to a significantly lesser degree than does suramin. We suggest that suramin and related polysulfonate compounds have potential for developing of antiherpes treatments.  (+info)

Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. (38/2943)

The terminase enzyme from bacteriophage lambda is composed of two viral proteins (gpA, 73.2 kDa; gpNu1, 20.4 kDa) and is responsible for packaging viral DNA into the confines of an empty procapsid. We are interested in the genetic, biochemical, and biophysical properties of DNA packaging in phage lambda and, in particular, the nucleoprotein complexes involved in these processes. These studies require the routine purification of large quantities of wild-type and mutant proteins in order to probe the molecular mechanism of DNA packaging. Toward this end, we have constructed a hexahistidine (hexa-His)-tagged terminase holoenzyme as well as hexa-His-tagged gpNu1 and gpA subunits. We present a simple, one-step purification scheme for the purification of large quantities of the holoenzyme and the individual subunits directly from the crude cell lysate. Importantly, we have developed a method to purify the highly insoluble gpNu1 subunit from inclusion bodies in a single step. Hexa-His terminase holoenzyme is functional in vivo and possesses steady-state and single-turnover ATPase activity that is indistinguishable from wild-type enzyme. The nuclease activity of the modified holoenzyme is near wild type, but the reaction exhibits a greater dependence on Escherichia coli integration host factor, a result that is mirrored in vivo. These results suggest that the hexa-His-tagged holoenzyme possesses a mild DNA-binding defect that is masked, at least in part, by integration host factor. The mild defect in hexa-His terminase holoenzyme is more significant in the isolated gpA-hexa-His subunit that does not appear to bind DNA. Moreover, whereas the hexa-His-tagged gpNu1 subunit may be reconstituted into a holoenzyme complex with wild-type catalytic activities, gpA-hexa-His is impaired in its interactions with the gpNu1 subunit of the enzyme. The results reported here underscore that a complete biochemical characterization of the effects of purification tags on enzyme function must be performed prior to their use in mechanistic studies.  (+info)

The highly ordered double-stranded RNA genome of bluetongue virus revealed by crystallography. (39/2943)

The concentration of double-stranded RNA within the bluetongue virus core renders the genome segments liquid crystalline. Powder diffraction rings confirm this local ordering with a 30 A separation between strands. Determination of the structure of the bluetongue virus core serotype 10 and comparison with that of serotype 1 reveals most of the genomic double-stranded RNA, packaged as well-ordered layers surrounding putative transcription complexes at the apices of the particle. The outer layer of RNA is sufficiently well ordered by interaction with the capsid that a model can be built and extended to the less-ordered inner layers, providing a structural framework for understanding the mechanism of this complex transcriptional machine. We show that the genome segments maintain local order during transcription.  (+info)

Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. (40/2943)

Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.  (+info)