The virulence plasmid-encoded impCAB operon enhances survival and induced mutagenesis in Shigella flexneri after exposure to UV radiation. (9/14670)

Upon exposure to UV radiation, Shigella flexneri SA100 displayed survival and mutation frequencies comparable to those of Escherichia coli AB1157, which contains a functional UmuDC error-prone DNA repair system. Survival of SA100 after UV irradiation was associated with the presence of the 220-kb virulence plasmid, pVP. This plasmid encodes homologues of ImpA and ImpB, which comprise an error-prone DNA repair system encoded on plasmid TP110 that was initially identified in Salmonella typhimurium, and ImpC, encoded upstream of ImpA and ImpB. Although the impB gene was present in representatives of all four species of Shigella, not all isolates tested contained the gene. Shigella isolates that lacked impB were more sensitive to UV radiation than isolates that contained impB. The nucleotide sequence of a 2.4-kb DNA fragment containing the imp operon from S. flexneri SA100 pVP was 96% identical to the imp operon from the plasmid TP110. An SA100 derivative with a mutation in the impB gene had reduced survival following UV irradiation and less UV-induced mutagenesis relative to the parental strain. We also found that S. flexneri contained a chromosomally encoded umuDC operon; however, the umuDC promoter was not induced by exposure to UV radiation. This suggests that the imp operon but not the umuDC operon contributes to survival and induced mutagenesis in S. flexneri following exposure to UV radiation.  (+info)

Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. (10/14670)

We have examined the role of adenylate cyclase-hemolysin (CyaA) by constructing an in-frame deletion in the Bordetella bronchiseptica cyaA structural gene and comparing wild-type and cyaA deletion strains in natural host infection models. Both the wild-type strain RB50 and its adenylate cyclase toxin deletion (DeltacyaA) derivative efficiently establish persistent infections in rabbits, rats, and mice following low-dose inoculation. In contrast, an inoculation protocol that seeds the lower respiratory tract revealed significant differences in bacterial numbers and in polymorphonuclear neutrophil recruitment in the lungs from days 5 to 12 postinoculation. We next explored the effects of disarming specific aspects of the immune system on the relative phenotypes of wild-type and DeltacyaA bacteria. SCID, SCID-beige, or RAG-1(-/-) mice succumbed to lethal systemic infection following high- or low-dose intranasal inoculation with the wild-type strain but not the DeltacyaA mutant. Mice rendered neutropenic by treatment with cyclophosphamide or by knockout mutation in the granulocyte colony-stimulating factor locus were highly susceptible to lethal infection by either wild-type or DeltacyaA strains. These results reveal the significant role played by neutrophils early in B. bronchiseptica infection and by acquired immunity at later time points and suggest that phagocytic cells are a primary in vivo target of the Bordetella adenylate cyclase toxin.  (+info)

Structure of cag pathogenicity island in Japanese Helicobacter pylori isolates. (11/14670)

BACKGROUND: cag pathogenicity island (PAI) is reported to be a major virulence factor of Helicobacter pylori. AIM: To characterise cagA and the cag PAI in Japanese H pylori strains. METHODS: H pylori isolates from Japanese patients were evaluated for CagA by immunoblot, for cagA transcription by northern blot, and for cagA and 13 other cag PAI genes by Southern blot. cagA negative strains from Western countries were also studied. Induction of interleukin-8 secretion from gastric epithelial cells was also investigated. RESULTS: All Japanese strains retained cagA. Fifty nine of 63 (94%) strains had all the cag PAI genes. In the remaining four, cag PAI was partially deleted, lacking cagA transcripts and not producing CagA protein. Details of the PAI of these strains were checked; three lacked cagB to cagQ (cagI) and continuously cagS to cag13 (cagII), and the remaining one lacked cagB to cag8. Western cagA negative strains completely lacked cag PAI including cagA. Nucleotide sequence analysis in one strain in which the cag PAI was partially deleted showed that the partial deletion contained 25 kb of cag PAI and the cagA promoter. Interleukin-8 induction was lower with the cag PAI partial deletion strains than with the intact ones. All Japanese cag PAI deleted strains were derived from patients with non-ulcer dyspepsia, whereas 41 of 59 (70%) CagA-producing strains were from patients with peptic ulcers or gastric cancer (p<0.05). CONCLUSIONS: Most Japanese H pylori strains had the intact cag PAI. However, some lacked most of the cag PAI in spite of the presence of cagA. Thus the presence of the cagA gene is not an invariable marker of cag PAI related virulence in Japanese strains.  (+info)

Immunising potency of Leptospira interrogans serotype canicola after heat inactivation at different temperatures. (12/14670)

The immunogenicity of Leptospira interrogans serotype canicola suspensions inactivated by various degrees of heat exposure was examined in hamsters. No differences between leptospires killed at 50 degrees C and at 98 degrees C were shown. After exposure to 121 degrees C, suspensions retained their ability to protect against lethal infections but lost their ability to prevent leptospiruria. Tests with vaccines inactivated at or below 98 degrees C showed that the doses required for complete protection varied with the interval between vaccination and challenge. Larger doses were required to prevent the development of leptospiruria than to prevent death.  (+info)

Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. (13/14670)

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to a wide range of antimicrobial agents including beta-lactams, aminoglycosides, macrolides, and polymyxins. We used Tn5-OT182 to mutagenize B. pseudomallei to identify the genes involved in aminoglycoside resistance. We report here on the identification of AmrAB-OprA, a multidrug efflux system in B. pseudomallei which is specific for both aminoglycoside and macrolide antibiotics. We isolated two transposon mutants, RM101 and RM102, which had 8- to 128-fold increases in their susceptibilities to the aminoglycosides streptomycin, gentamicin, neomycin, tobramycin, kanamycin, and spectinomycin. In addition, both mutants, in contrast to the parent, were susceptible to the macrolides erythromycin and clarithromycin but not to the lincosamide clindamycin. Sequencing of the DNA flanking the transposon insertions revealed a putative operon consisting of a resistance, nodulation, division-type transporter, a membrane fusion protein, an outer membrane protein, and a divergently transcribed regulatorprotein. Consistent with the presence of an efflux system, both mutants accumulated [3H] dihydro streptomycin, whereas the parent strain did not. We constructed an amr deletion strain, B. pseudomallei DD503, which was hypersusceptible to aminoglycosides and macrolides and which was used successfully in allelic exchange experiments. These results suggest that an efflux system is a major contributor to the inherent high-level aminoglycoside and macrolide resistance found in B. pseudomallei.  (+info)

In vitro activities of cephalosporins and quinolones against Escherichia coli strains isolated from diarrheic dairy calves. (14/14670)

The in vitro activities of several cephalosporins and quinolones against 195 strains of Escherichia coli isolated from diary calves affected by neonatal diarrhea were determined. One hundred thirty-seven of these strains produced one or more potential virulence factors (F5, F41, F17, cytotoxic necrotizing factor, verotoxin, and the eae gene), but the remaining 58 strains did not produce any of these factors. From 11 to 18% of the E. coli strains were resistant to cephalothin, nalidixic acid, enoxacin, and enrofloxacin. However, cefuroxime, cefotaxime, and cefquinome were highly effective against the E. coli isolates tested. Some significant differences (P < 0.05) in resistance to quinolones between the strains producing potential virulence factors and nonfimbriated, nontoxigenic, eae-negative strains were found. Thus, eae-positive, necrotoxigenic, and verotoxigenic (except for nalidixic acid) E. coli strains were significantly more sensitive to nalidixic acid, enoxacin, and enrofloxacin than nonfimbriated, nontoxigenic, eae-negative strains. Moreover, eae-positive strains were significantly more sensitive to enoxacin and enrofloxacin than F5-positive strains. Thus, the result of this study suggest that the bovine E. coli strains that produce some potential virulence factors are more sensitive to quinolones than those that do not express these factors.  (+info)

Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E). (15/14670)

Vibrio vulnificus biotype 2 (serovar E) is a primary eel pathogen. In this study, we performed long-term survival experiments to investigate whether the aquatic ecosystem can be a reservoir for this bacterium. We have used microcosms containing water of different salinities (ranging from 0.3 to 3.8%) maintained at three temperatures (12, 25, and 30 degrees C). Temperature and salinity significantly affected long-term survival: (i) the optimal salinity for survival was 1.5%; (ii) lower salinities reduced survival, although they were nonlethal; and (ii) the optimal temperature for survival was dependent on the salinity (25 degrees C for microcosms at 0.3 and 0.5% and 12 degrees C for microcosms at 1.5 to 3.8%). In the absence of salts, culturability dropped to zero in a few days, without evidence of cellular lysis. Under optimal conditions of salinity and temperature, the bacterium was able to survive in the free-living form for at least 3 years. The presence of a capsule on the bacterial cell seemed to confer an advantage, since the long-term survival rate of opaque variants was significantly higher than that of translucent ones. Long-term-starved cells maintained their infectivity for eels (as determined by both intraperitoneal and immersion challenges) and mice. Examination under the microscope showed that (i) the capsule was maintained, (ii) the cell size decreased, (iii) the rod shape changed to coccuslike along the time of starvation, and (iv) membrane vesicles and extracellular material were occasionally produced. In conclusion, V. vulnificus biotype 2 follows a survival strategy similar to that of biotype 1 of this species in response to starvation conditions in water. Moreover, the aquatic ecosystem is one of its reservoirs.  (+info)

Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. (16/14670)

The existence of strains of Vibrio vulnificus serovar E that are avirulent for eels is reported in this work. These isolates were recovered from water and oysters and differed from eel virulent strains in (i) fermentation and utilization of mannitol, (ii) ribotyping after HindIII digestion, and (iii) susceptibility to eel serum. Lipopolysaccharide of these strains lacked the highest molecular weight immunoreactive bands, which are probably involved in serum resistance.  (+info)