Effect of Pseudomonas aeruginosa exotoxin A on endotoxin-induced tumour necrosis factor production in murine lung. (9/5284)

The ability of several Pseudomonas aeruginosa exo-enzymes, including exotoxin A (ETA), to induce inflammation and their influence on endotoxin-induced tumour necrosis factor (TNF) production in murine lung were evaluated. Intratracheal administration of lipopolysaccharide (LPS; 0.1-10 microg/mouse), 2(-1) LD50 of P. aeruginosa alkaline protease (7.5 microg/mouse) and elastase (1.2 microg/mouse) elevated total cell number and the percentage of neutrophils in broncho-alveolar lavage fluid (BALF), whereas ETA (0.1 microg/mouse) did not. LPS induced TNF production in BALF in a dose-dependent manner, whereas the P. aeruginosa exo-enzymes did not. When ETA was inoculated into the respiratory tract before LPS, production of TNF in BALF was significantly suppressed in a dose-dependent manner. ETA also suppressed TNF production by alveolar macrophages (AMs) stimulated with LPS in vitro. Flow cytometric analysis showed that ETA markedly reduced the expression of CD14 and CD11c/CD18 on the surface of AMs. ETA also depressed partially the expression of TNF-alpha mRNA in AMs. These findings suggest that ETA regulates TNF production in murine lung by suppressing LPS receptor expression, mRNA expression and protein synthesis and/or secretion of TNF.  (+info)

A fluorescence investigation of the active site of Pseudomonas aeruginosa exotoxin A. (10/5284)

Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  (+info)

Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. (11/5284)

About 12,000 Americans are diagnosed with malignant astrocytoma each year. Despite surgery, radiotherapy, and chemotherapy, the prognosis of these patients remains poor. Targeted toxins based on the identification of novel antigens or receptors provide a promising new approach to treating cancer. We have identified one such cell surface protein in the form of interleukin (IL)-4 receptors (IL-4R) on human malignant astrocytoma. Normal brain tissues from frontal cortex and temporal lobe cortex do not express IL-4R. To target IL-4R, we generated a chimeric fusion protein composed of IL-4 and Pseudomonas exotoxin (IL4-PE). This toxin is highly cytotoxic to IL-4R-bearing human brain cancer cells. Preclinical toxicologic experiments were performed in mice, rats, and guinea pigs to determine an maximum tolerated dose. Intrathecal administration in cynomolgus monkeys produced high cerebrospinal fluid levels without any central nervous system or other abnormalities. When IL4-PE was injected into the right frontal cortex of rats, localized necrosis was observed at 1,000 but not < or =100 microg/ml doses. Intravenous administration of this biologic to monkeys produced reversible grade 3 or grade 4 elevations of hepatic enzymes in a dose-dependent manner. These results indicate that localized administration can produce nontoxic levels of IL4-PE that may have significant activity against astrocytoma. In vivo experiments with nude mice have demonstrated that IL4-PE has significant antitumor activity against human glioblastoma tumor model. Intratumor administration of IL4-PE has been initiated for the treatment of malignant astrocytoma in a phase I clinical trial.  (+info)

BR96 sFv-PE40 immunotoxin: nonclinical safety assessment. (12/5284)

BR96 sFv-PE40, a recombinant DNA-derived fusion protein composed of the heavy- and light-chain variable region domains of the monoclonal antibody BR96 and the translocation and catalytic domains of Pseudomonas exotoxin A, is being developed for the treatment of solid tumors expressing cell surface Lewis(y)-related antigens. Single- and repeat-dose intravenous toxicity studies in rats and dogs and a comparative ex vivo tissue-binding study with rat, dog, and human tissues were conducted to assess the toxicity of BR96 sFv-PE40 and to estimate a safe starting dose in humans. Additional studies were performed to investigate the prevention of pulmonary vascular-leak syndrome, the dose-limiting toxicity of BR96 sFv-PE40 in rats, and the immunogenicity of BR96 sFv-PE40. In single-dose studies in rats, the vascular leak appeared to be primarily confined to the lungs; however, with a repeat-dose regimen (every other day for 5 doses) other organs including the brain and heart were involved at lethal doses (12-15 mg/m2 cumulative). Single doses of 1.8 mg/m2 and a cumulative 3.8 mg/m2 dose (0.75 mg/m2, every other day for 5 doses) were generally well tolerated in rats. These doses are significantly greater than doses required to cure rodents bearing human tumor xenografts. In dogs, the major target organ following single or repeated doses (every 3 days for 5 doses) was the pancreas. Morphologic changes in the exocrine pancreas ranged from atrophy with single-cell necrosis to diffuse acinar necrosis. After a 1-mo dose-free observation period, no residual pancreatic toxicity was observed in dogs given single doses up to 6.0 mg/m2 or 5 doses of 2.4 mg/m2 (12 mg/m2 cumulative). No significant pancreatic toxicity was observed at doses <0.6 mg/m2 in high Lewis(y)-expressing dogs. Assessment of trypsinlike immunoreactivity was useful in monitoring changes in pancreatic function. The immunogenicity of BR96 sFv-PE40 could be inhibited by combined treatment with an immunosuppressant in dogs, thus maintaining exposure to BR96 sFv-PE40.  (+info)

Role of the 85-kilobase plasmid and plasmid-encoded virulence-associated protein A in intracellular survival and virulence of Rhodococcus equi. (13/5284)

Rhodococcus equi is a facultative intracellular pathogen of macrophages and a cause of pneumonia in young horses (foals) and immunocompromised people. Isolates of R. equi from pneumonic foals typically contain large, 85- or 90-kb plasmids encoding a highly immunogenic virulence-associated protein (VapA). The objective of this study was to determine the role of the 85-kb plasmid and VapA in the intracellular survival and virulence of R. equi. Clinical isolates containing the plasmid and expressing VapA efficiently replicated within mouse macrophages in vitro, while plasmid-cured derivatives of these organisms did not multiply intracellularly. An isolate harboring the large plasmid also replicated in the tissues of experimentally infected mice, whereas its plasmid-cured derivative was rapidly cleared. All foals experimentally infected with a plasmid-containing clinical isolate developed severe bronchopneumonia, whereas the foals infected with its plasmid-cured derivative remained asymptomatic and free of visible lung lesions. By day 14 postinfection, lung bacterial burdens had increased considerably in foals challenged with the plasmid-containing clinical isolate. In contrast, bacteria could no longer be cultured from the lungs of foals challenged with the isogenic plasmid-cured derivative. A recombinant, plasmid-cured derivative expressing wild-type levels of VapA failed to replicate in macrophages and remained avirulent for both mice and foals. These results show that the 85-kb plasmid of R. equi is essential for intracellular replication within macrophages and for development of disease in the native host, the foal. However, expression of VapA alone is not sufficient to restore the virulence phenotype.  (+info)

Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. (14/5284)

The Agrobacterium tumefaciens VirB4 ATPase functions with other VirB proteins to export T-DNA to susceptible plant cells and other DNA substrates to a variety of prokaryotic and eukaryotic cells. Previous studies have demonstrated that VirB4 mutants with defects in the Walker A nucleotide-binding motif are non-functional and exert a dominant negative phenotype when synthesized in wild-type cells. This study characterized the oligomeric structure of VirB4 and examined the effects of Walker A sequence mutations on complex formation and transporter activity. VirB4 directed dimer formation when fused to the amino-terminal portion of cI repressor protein, as shown by immunity of Escherichia coli cells to lambda phage infection. VirB4 also dimerized in Agrobacterium tumefaciens, as demonstrated by the recovery of a detergent-resistant complex of native protein and a functional, histidine-tagged derivative by precipitation with anti-His6 antibodies and by Co2+ affinity chromatography. Walker A sequence mutants directed repressor dimerization in E. coli and interacted with His-VirB4 in A. tumefaciens, indicating that ATP binding is not required for self-association. A dimerization domain was localized to a proposed N-terminal membrane-spanning region of VirB4, as shown by the dominance of an allele coding for the N-terminal 312 residues and phage immunity of host cells expressing cI repressor fusions to alleles for the first 237 or 312 residues. A recent study reported that the synthesis of a subset of VirB proteins, including VirB4, in agrobacterial recipients has a pronounced stimulatory effect on the virB-dependent conjugal transfer of plasmid RSF1010 by agrobacterial donors. VirB4'312 suppressed the stimulatory effect of VirB proteins for DNA uptake when synthesized in recipient cells. In striking contrast, Walker A sequence mutants contributed to the stimulatory effect of VirB proteins to the same extent as native VirB4. These findings indicate that the oligomeric structure of VirB4, but not its capacity to bind ATP, is important for the assembly of VirB proteins as a DNA uptake system. The results of these studies support a model in which VirB4 dimers or homomultimers contribute structural information for the assembly of a transenvelope channel competent for bidirectional DNA transfer, whereas an ATP-dependent activity is required for configuring this channel as a dedicated export machine.  (+info)

Discovery of virulence genes of Legionella pneumophila by using signature tagged mutagenesis in a guinea pig pneumonia model. (15/5284)

Legionella pneumophila is the cause of Legionnaires' disease, which is a form of potentially fatal pneumonia. To identify genes required for virulence of the bacterium, a library of 1,386 L. pneumophila signature tagged transposon mutants was studied for guinea pig virulence. The mutants were screened in pools of 96 each in a guinea pig model of L. pneumophila pneumonia. Sixteen unique mutant clones were determined to have attenuated virulence after being screened twice in the animal model. All 16 mutants failed to multiply in both lungs and spleens. Four of the sixteen had no apparent defect for intracellular multiplication in macrophages. Partial DNA sequences of the interrupted genes adjacent to the transposon insertions showed that six of them had mutations in five known L. pneumophila virulence genes: dotB, dotF/icmG, dotO/icmB, icmX, and proA. Three of the sequenced clones contained mutations in genes without known homology to other published bacterial genes, and seven clones appeared to be homologous to five different known bacterial genes but are still being characterized. With this methodology, we demonstrate the existence of L. pneumophila genes responsible for non-macrophage-related virulence. The discovery of L. pneumophila virulence genes indicates the utility of the signature tagged mutagenesis technique for pulmonary pathogens.  (+info)

Transcriptional activation of Agrobacterium tumefaciens virulence gene promoters in Escherichia coli requires the A. tumefaciens RpoA gene, encoding the alpha subunit of RNA polymerase. (16/5284)

The two-component regulatory system, composed of virA and virG, is indispensable for transcription of virulence genes within Agrobacterium tumefaciens. However, virA and virG are insufficient to activate transcription from virulence gene promoters within Escherichia coli cells, indicating a requirement for additional A. tumefaciens genes. In a search for these additional genes, we have identified the rpoA gene, encoding the alpha subunit of RNA polymerase (RNAP), which confers significant expression of a virB promoter (virBp)::lacZ fusion in E. coli in the presence of an active transcriptional regulator virG gene. We conducted in vitro transcription assays using either reconstituted E. coli RNAP or hybrid RNAP in which the alpha subunit was derived from A. tumefaciens. The two forms of RNAP were equally efficient in transcription from a sigma(70)-dependent E. coli galP1 promoter; however, only the hybrid RNAP was able to transcribe virBp in a virG-dependent manner. In addition, we provide evidence that the alpha subunit from A. tumefaciens, but not from E. coli, is able to interact with the VirG protein. These data suggest that transcription of virulence genes requires specific interaction between VirG and the alpha subunit of A. tumefaciens and that the alpha subunit from E. coli is unable to effectively interact with the VirG protein. This work provides the basis for future studies designed to examine vir gene expression as well as the T-DNA transfer process in E. coli.  (+info)