Characterization of novel safe lentiviral vectors derived from simian immunodeficiency virus (SIVmac251) that efficiently transduce mature human dendritic cells. (1/120)

We describe the generation and the characterization of new lentiviral vectors derived from SIVmac251, a simian immunodeficiency virus (SIV). A methodical approach was used to engineer both efficient and safe packaging constructs allowing the production of SIV viral core proteins. SIV-vectors encoding GFP (green fluorescent protein) were generated as VSV-G-pseudotyped particles upon transient expression of the vector construct and helper functions in 293 cells. The SIV vectors were able to transduce efficiently various target cell types at low multiplicity of infection, including monocyte-differentiated human dendritic cells (DCs) which retained their capacity to differentiate into mature DCs after gene transfer. Transduction of the DCs by the SIV vectors was prevented when infections were performed in the presence of AZT, a reverse-transcriptase inhibitor. After gene transfer, expression of the GFP in the target cells remained constant after several weeks, indicating that the vectors had been stably integrated into the genome of the host cells. Preparations of SIV vectors were systematically checked for the absence of replication-competent and recombinant retroviruses but remained negative, suggesting the innocuousness of these novel gene delivery vectors. Side-to-side comparisons with vectors derived from HIV-1 (human immunodeficiency virus) indicated that the SIV vectors were equally potent in transducing proliferating target cells. Finally, we have determined the infectivity of SIV vectors pseudotyped with surface glycoproteins of several membrane-enveloped viruses.  (+info)

Transcriptionally active drugs improve adenovirus vector performance in vitro and in vivo. (2/120)

Cytomegalovirus (CMV) promoter is often present in recombinant adenovirus vectors (AdVs) suitable for gene therapy, ensuring high levels of transgene production in a wide range of hosts. Despite this characteristic, the presence of the AdV genome in target cells and tissues typically lasts longer than transgene production that may be rapidly extincted by ill-defined silencing mechanisms. In the present article, it is reported that transcriptionally active drugs, retinoic acid (RA) and histone deacetylase inhibitor trichostatin A (TSA), enhance AdV transgene expression in infected cells and tissues. The association of RA and TSA increased more than seven-fold above control the activity of AdVs encoding for LacZ or VEGF165. This effect was, at least in part, mediated by the direct activation of retinoic acid receptors. Finally, administration of RA and TSA alone at days 0 and 5 after infection prolonged transgene production up to 21 days after infection versus 6-8 days in untreated controls. These results indicate that transcriptionally active drugs improve AdV function and may represent a novel strategy to more efficiently design AdVs for gene therapy interventions.  (+info)

Transcriptional targeting of adenoviral gene delivery into migrating wound keratinocytes using FiRE, a growth factor-inducible regulatory element. (3/120)

Impaired cutaneous wound healing is a common complication in diabetes, ischemia and venous insufficiency of lower extremities, and in long-term treatment with corticosteroids or other immunosuppressive agents. In development of gene therapy for wound repair, expression of therapeutic transgenes should be precisely targeted and controlled. Here, we describe a recombinant adenovirus RAdFiRE-EGFP, in which a growth factor inducible element (FiRE) of the murine syndecan-1 gene controls the expression of enhanced green fluorescent protein (EGFP) reporter gene. Treatment of RAdFiRE-EGFP-transduced murine epidermal keratinocytes in culture with FiRE-activating growth factor markedly enhanced the expression of EGFP. In ex vivo organ culture of wounded murine skin transduced with RAdFiRE-EGFP, the EGFP expression was specifically detected in wound margin keratinocytes, but not in intact skin. Activity of EGFP was first detected 2 days after a single application of RAdFiRE-EGFP and persisted up to 10 days. Similarly, FiRE-driven EGFP expression was detected specifically in epidermal keratinocytes in the edge of incisional wounds in murine skin transduced with RAdFiRE-EGFP. In contrast, adenovirus-mediated lacZ expression driven by CMV promoter was detected scattered in epidermal, dermal and subcutaneous layers in ex vivo and in vivo wounds, as well as in intact skin. These data demonstrate the feasibility of FiRE as a tool for transcriptional targeting of adenovirus-mediated transgene expression to cutaneous wound edge keratinocytes.  (+info)

In vivo transfer of human hepatocyte growth factor gene accelerates re-endothelialization and inhibits neointimal formation after balloon injury in rat model. (4/120)

Although most therapeutic strategies to prevent restenosis are designed to inhibit vascular smooth muscle cell (VSMC) proliferation directly, VSMC proliferation might be indirectly inhibited by re-endothelialization, as endothelial cells secrete antiproliferative and antithrombotic substances. We hypothesized that application of an endothelium-specific growth factor to balloon-injured arteries could accelerate re-endothelialization, thereby attenuating intimal hyperplasia. In this study, we investigated in vivo gene transfer of human HGF that exclusively stimulated endothelial cells without replication of VSMC growth into injured vessels. Transfection of human HGF gene into rat balloon-injured carotid artery resulted in significant inhibition of neointimal formation up to at least 8 weeks after transfection, accompanied by detection of human immunoreactive HGF. Induction of re-endothelialization induced by overexpression of human HGF gene transfer into balloon-injured vessels is supported by several lines of evidence: (1) Administration of HGF vector. but not control vector, markedly inhibited neointimal formation, accompanied by a significant increase in vascular human and rat HGF concentrations. (2) Planimetric analysis demonstrated a significant increase in re-endothelialized area in arteries transfected with human HGF vector. (3) Induction of NO content in balloon-injured vessels transfected with human HGF vector was observed in accordance with the recovery of endothelial vasodilator properties in response to acetylcholine. As endogenous HGF expression in balloon-injured vessels was significantly decreased as compared with normal vessels, the present study demonstrated the successful inhibition of neointimal formation by transfection of human HGF gene as 'cytokine supplement therapy' in a rat balloon injury model.  (+info)

Expression of DeltaF508 CFTR in normal mouse lung after site-specific modification of CFTR sequences by SFHR. (5/120)

The development of gene targeting strategies for specific modification of genomic DNA in human somatic cells has provided a potential gene therapy for the treatment of inherited diseases. One approach, small fragment homologous replacement (SFHR), directly targets and modifies specific genomic sequences with small fragments of exogenous DNA (400-800 bp) that are homologous to genomic sequences except for the desired modification. This approach has been effective for the in vitro modification of exon 10 in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in human airway epithelial cells. As another step in the development of SFHR for gene therapy, studies were carried out to target and modify specific genomic sequences in exon 10 of the mouse CFTR (mCFTR) in vivo. Small DNA fragments (783 bp), homologous to mCFTR except for a 3-bp deletion (DeltaF508) and a silent mutation which introduces a unique restriction site (KpnI), were instilled into the lungs of normal mice using four different DNA vehicles (AVE, LipofectAMINE, DDAB, SuperFect). Successful modification was determined by PCR amplification of DNA or mRNA-derived cDNA followed by KpnI digestion. The results of these studies showed that SFHR can be used as a gene therapy to introduce specific modifications into the cells of clinically affected organs and that the cells will express the new sequence.  (+info)

Replication-defective recombinant Semliki Forest virus encoding GM-CSF as a vector system for rapid and facile generation of autologous human tumor cell vaccines. (6/120)

This paper describes the production of recombinant Semliki Forest virus encoding murine or human granulocyte-macrophage colony-stimulating factor (GM-CSF) and the capacity of these vectors to transduce murine and human tumor cells ex vivo. High-titer stocks (up to 3 x 10(9) particles/ml) of conditionally infective, replication-defective, recombinant SFV particles were generated using the SFV Helper-2 system. It is shown that the recombinant SFV/GM-CSF virus, as well as recombinant SFV carrying the beta-galactosidase reporter gene, efficiently transduce both murine tumor cell lines as well as primary human renal carcinoma cells. Using ELISA's specific for GM-CSF, levels of GM-CSF production by the cells were determined. Levels of murine GM-CSF (mGM-CSF) produced by SFV/mGM-CSF transduced renal cell cancer cultures were equal to or higher than corresponding levels reported in the literature after transduction of similar renal carcinoma cell cultures using a retroviral vector system. The biological activity of GM-CSF was demonstrated by using cells which are dependent on GM-CSF for growth and by using primary bone marrow cells. All the transduced cell cultures (including the human renal cell carcinoma samples) produced GM-CSF for up to at least 4 days after transduction. The results imply that the recombinant SFV system can be used for rapid and facile preparation of autologous cancer cell vaccines.  (+info)

Targeting influenza virosomes to ovarian carcinoma cells. (7/120)

Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) have attracted attention as delivery vesicles for cytosolic drug delivery as they possess membrane fusion activity. Here, we show that influenza virosomes can be targeted towards ovarian carcinoma cells (OVCAR-3) with preservation of fusion activity. This was achieved by incorporating poly(ethylene glycol) (PEG)-derivatized lipids into the virosome membrane. This PEG layer serves as shield to prevent interaction of HA with ubiquitous sialic acid residues and as spatial anchor for antibody attachment. Coupling of Fab' fragments of mAb 323/A3 (anti-epithelial glycoprotein-2) to the distal ends of PEG lipids resulted in specific binding of virosomes to OVCAR-3 cells. These antibody-redirected virosomes fused with membranes of OVCAR-3 cells in a pH-dependent fashion.  (+info)

Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. (8/120)

Molecular chaperones assist protein folding, and some chaperones are induced by heat, nutrient depletion, or pathogen invasion. This study investigates the role played by Hsp90 in the life cycle of vaccinia virus. The titer of vaccinia intracellular mature virions (IMV) was reduced by 2 orders of magnitude in RK13 cells treated with geldanamycin (GA), which blocks the ATPase activity of Hsp90. GA does not affect expression from the viral early promoter, but treatment with GA delays DNA replication and intermediate gene transcription and reduces expression from the viral late promoter. Vaccinia virus infection does not induce Hsp90 expression; however, intracellular distribution of Hsp90 is altered in virus-infected cells. Hsp90 is restricted to the cytoplasm of mock-infected cells; in contrast, Hsp90 is transiently associated with virosomes in virus-infected cells although it is not incorporated into IMV. In addition, Hsp90 interacts with viral core protein 4a, the mature form of the A10L gene product, in virus-infected cells. In conclusion, these results suggest that a cellular chaperone protein, Hsp90, is important for vaccinia virus growth in cultured cells and that viral core protein 4a associates with Hsp90-containing complexes in the infected cells.  (+info)