Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22. (17/2581)

We demonstrate that fusion proteins consisting of the herpes simplex virus (HSV) transport protein VP22 linked in frame to HSV thymidine kinase (tk) retain the ability to be transported between cells. In vivo radiolabelling experiments and in vitro assays show that the fusion proteins also retain tk activity. When transfected COS cells, acting as a source of the VP22-tk chimera, were co-plated on to gap junction-negative neuroblastoma cells, ganciclovir treatment induced efficient cell death in the recipient neuroblastoma cell monolayer. No such effect was observed with COS cells transfected with tk alone. Tumours established in mice with neuroblastoma cell lines expressing VP22-tk regressed upon administration of ganciclovir. Furthermore tumours established from 50:50 mixtures of VP22-tk transduced and nontransduced cells also regressed while no significant effect was observed in similar experiments with cells transduced with tk alone. VP22 mediated transport may thus have application in a clinical setting to amplify delivery of the target protein in enzyme-prodrug protocols.  (+info)

Intercellular trafficking of VP22-GFP fusion proteins. (18/2581)

The herpes simplex virus protein VP22 exhibits the unusual property of intercellular transport whereby after being synthesised in a subpopulation of cells, in which it is largely cytoplasmic, the protein is transported to adjacent cells where it accumulates mainly in the nucleus. Here we examine the transport of a fusion protein consisting of VP22 linked to the green fluorescent protein (GFP). Intercellular transport, nuclear accumulation and chromatin binding of VP22-GFP could be detected by intrinsic GFP fluorescence in fixed cells. However, while the cytoplasmic localisation of VP22-GFP could be detected in live cells actively synthesising the protein, we were unable to detect intercellular transport by intrinsic GFP fluorescence in livecells, indicating that the levels of transported protein may be below those required for live detection, or that GFP fluorescence was quenched. The use of antibody to GFP was more sensitive than intrinsic GFP fluorescence and allowed ready detection of transport and nuclear accumulation of VP22-GFP. Intercellular transport was also confirmed in coplating experiments. Consistent with previous results showing a requirement for the C-terminus of VP22 in transport of the native protein, a fusion protein consisting of GFP linked to the N-terminal 1-192 residues of VP22 failed to transport between cells. The results support the proposal that VP22 has the ability to transport cargo proteins between cells and that it has significant potential in the field of gene therapy.  (+info)

Sequence comparison of the VP2 variable region of infectious bursal disease virus isolates from Vietnam. (19/2581)

The variable region in the VP2 gene of twenty-three infectious bursal disease virus (IBDV) isolates, collected in Vietnam in 1997 and 1998, was amplified as cDNA by using the reverse transcription-polymerase chain reaction and sequenced. Analysis of amino acid substitutions and phylogenetic relationships of the deduced amino acid sequences (residues 206-350) showed that the nineteen Vietnamese vv IBDVs clustered with the European vv IBDVs, Japanese vv IBDVs and Chinese vv strains, and that the four vietnamese virulent strains were closely related to European virulent strain 52/70. These results suggest that Vietnamese vv IBDVs, European vv IBDVs, Japanese vv IBDVs and Chinese vv strains have the same origin.  (+info)

In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid-binding domain. (20/2581)

The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.  (+info)

Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. (21/2581)

Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.  (+info)

Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. (22/2581)

Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.  (+info)

Optimal replication activity of vesicular stomatitis virus RNA polymerase requires phosphorylation of a residue(s) at carboxy-terminal domain II of its accessory subunit, phosphoprotein P. (23/2581)

The phosphoprotein, P, of vesicular stomatitis virus (VSV) is a key subunit of the viral RNA-dependent RNA polymerase complex. The protein is phosphorylated at multiple sites in two different domains. We recently showed that specific serine and threonine residues within the amino-terminal acidic domain I of P protein must be phosphorylated for in vivo transcription activity, but not for replication activity, of the polymerase complex. To examine the role of phosphorylation of the carboxy-terminal domain II residues of the P protein in transcription and replication, we have used a panel of mutant P proteins in which the phosphate acceptor sites (Ser-226, Ser-227, and Ser-233) were altered to alanines either individually or in various combinations. Analyses of the mutant proteins for their ability to support replication of a VSV minigenomic RNA suggest that phosphorylation of either Ser-226 or Ser-227 is necessary for optimal replication activity of the protein. The mutant protein (P226/227) in which both of these residues were altered to alanines was only about 8% active in replication compared to the wild-type (wt) protein. Substitution of alanine for Ser-233 did not have any adverse effect on replication activity of the protein. In contrast, all the mutant proteins showed activities similar to that of the wt protein in transcription. These results indicate that phosphorylation of the carboxy-terminal domain II residues of P protein are required for optimal replication activity but not for transcription activity. Furthermore, substitution of glutamic acid residues for Ser-226 and Ser-227 resulted in a protein that was only 14% active in replication but almost fully active in transcription. Taken together, these results, along with our earlier studies, suggest that phosphorylation of residues at two different domains in the P protein regulates its activity in transcription and replication of the VSV genome.  (+info)

Hepatitis A virus capsid protein VP1 has a heterogeneous C terminus. (24/2581)

Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1.  (+info)