Mutational evidence that the VPg is involved in the replication and not the movement of Pea enation mosaic virus-1. (65/2156)

Pea enation mosaic disease is caused by an obligatory association between the enamovirus Pea enation mosaic virus-1 (PEMV-1) and the umbravirus Pea enation mosaic virus-2 (PEMV-2). Encapsidated RNAs 1 and 2 are covalently linked to a 3138 Da VPg encoded by the RNA of PEMV-1. To determine the role of the VPg in the pathogenicity of PEMV (PEMV-1+PEMV-2), the infectivity of clones with mutations in key amino acids in the VPg was evaluated in protoplasts and in plants. Using quantitative, real-time RT-PCR, we concluded that the inability of certain mutants to infect plants was due to their replicative (and not their movement) incompetence. Mutant clones that produced delayed and less severe infections accumulated 10- to 100-fold less RNA-1 compared to WT-RNA-1 both in plants and in protoplasts. The RNAs of clones that produced WT-like infections accumulated to levels similar to those of WT-PEMV. Also, we demonstrate that the severity of symptoms produced by WT-PEMV is proportional to the amount of RNA-1 that accumulates in infected plants and seems to be independent of the amount of RNA-2. A dual role for the VPg in the pathogenicity of PEMV is proposed.  (+info)

NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. (66/2156)

The genome of lymphocytic choriomeningitis virus (LCMV) consists of two negative-sense single-stranded RNA segments, designated L and S. Both segments contain two viral genes in an ambisense coding strategy, with the genes being separated by an intergenic region (IGR). We have developed a reverse genetic system that allows the investigation of cis-acting signals and trans-acting factors involved in transcription and replication of LCMV. To this end, we constructed an LCMV S minigenome consisting of a negative-sense copy of the chloramphenicol acetyltransferase (CAT) reporter gene flanked upstream by the S 5' untranslated region (UTR) and IGR and downstream by the S 3' UTR. CAT expression was detected in LCMV-infected cells transfected with the minigenome RNA. Intracellular coexpression of the LCMV minigenome and LCMV L and NP proteins supplied from cotransfected plasmids driven by the T7 RNA polymerase provided by the recombinant vaccinia virus vTF7-3 resulted in high levels of CAT activity and synthesis of subgenomic CAT mRNA and antiminigenome RNA species. Thus, L and NP represent the minimal viral trans-acting factors required for efficient RNA synthesis mediated by LCMV polymerase.  (+info)

Characterization of vaccinia virus intracellular cores: implications for viral uncoating and core structure. (67/2156)

The entry of vaccinia virus (VV) into the host cell results in the delivery of the double-stranded DNA genome-containing core into the cytoplasm. The core is disassembled, releasing the viral DNA in order to initiate VV cytoplasmic transcription and DNA replication. Core disassembly can be prevented using the VV early transcription inhibitor actinomycin D (actD), since early VV protein synthesis is required for core uncoating. In this study, VV intracellular cores were accumulated in the presence of actD and isolated from infected cells. The content of these cores was analyzed by negative staining EM and by Western blotting using a collection of antibodies to VV core and membrane proteins. By Western blot analyses, intracellular actD cores, as well as cores prepared by NP-40-dithiothreitol treatment of purified virions (NP-40/DTT cores), contained the core proteins p25 (encoded by L4R), 4a (A10L), 4b (A3L), and p39 (A4L) as well as small amounts of the VV membrane proteins p32 (D8L) and p35 (H3L). While NP-40/DTT cores contained the major putative DNA-binding protein p11 (F17R), actD cores entirely lacked this protein. Labeled cryosections of cells infected for different periods of time in the presence or absence of actD were subsequently used to follow the fate of VV core proteins by EM. These EM images confirmed that p11 was lost at the plasma membrane upon core penetration. The cores that accumulated in the presence of actD were labeled with antibodies to 4a, p39, p25, and DNA at all times examined. In the absence of the drug the cores gradually lost their electron-dense inner part, concomitant with the loss of p25 and DNA labeling. The remaining core shell still labeled with antibodies to p39 and 4a/4b, implying that these proteins are part of this structure. These combined data are discussed with respect to the structure of VV as well as core disassembly.  (+info)

Nucleic acid-dependent cross-linking of the nucleocapsid protein of Sindbis virus. (68/2156)

The assembly of the alphavirus nucleocapsid core is a multistep event requiring the association of the nucleocapsid protein with nucleic acid and the subsequent oligomerization of capsid proteins into an assembled core particle. Although the mechanism of assembly has been investigated extensively both in vivo and in vitro, no intermediates in the core assembly pathway have been identified. Through the use of both truncated and mutant Sindbis virus nucleocapsid proteins and a variety of cross-linking reagents, a possible nucleic acid-protein assembly intermediate has been detected. The cross-linked species, a covalent dimer, has been detected only in the presence of nucleic acid and with capsid proteins capable of binding nucleic acid. Optimum nucleic acid-dependent cross-linking was seen at a protein-to-nucleic-acid ratio identical to that required for maximum binding of the capsid protein to nucleic acid. Identical results were observed when cross-linking in vitro assembled core particles of both Sindbis and Ross River viruses. Purified cross-linked dimers of truncated proteins and of mutant proteins that failed to assemble were found to incorporate into assembled core particles when present as minor components in assembly reactions, suggesting that the cross-linking traps an authentic intermediate in nucleocapsid core assembly. Endoproteinase Lys-C mapping of the position of the cross-link indicated that lysine 250 of one capsid protein was cross-linked to lysine 250 of an adjacent capsid protein. Examination of the position of the cross-link in relation to the existing model of the nucleocapsid core suggests that the cross-linked species is a cross-capsomere contact between a pentamer and hexamer at the quasi-threefold axis or is a cross-capsomere contact between hexamers at the threefold axis of the icosahedral core particle and suggests several possible assembly models involving a nucleic acid-bound dimer of capsid protein as an early step in the assembly pathway.  (+info)

Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. (69/2156)

In order to determine how efficiently the polymerase proteins derived from human and avian influenza A viruses can interact with each other in the context of a mammalian cell, a genetic system that allows the in vivo reconstitution of active ribonucleoproteins was used. The ability to achieve replication of a viral-like reporter RNA in COS-1 cells was examined with heterospecific mixtures of the core proteins (PB1, PB2, PA and NP) from two strains of human viruses (A/Puerto Rico/8/34 and A/Victoria/3/75), two strains of avian viruses (A/Mallard/NY/6750/78 and A/FPV/-Rostock/34), and a strain of avian origin (A/Hong Kong/156/97) that was isolated from the first human case of H5N1 influenza in Hong Kong in 1997. In accordance with published observations on reassortant viruses, PB2 amino acid 627 was identified as a major determinant of the replication efficiency of heterospecific complexes in COS-1 cells. Moreover, the results showed that replication of the viral-like reporter RNA was more efficient when PB2 and NP were both derived from the same avian or human virus or when PB1 was derived from an avian virus, whatever the origin of the other proteins. Furthermore, the PB1 and PB2 proteins from the A/Hong- Kong/156/97 virus exhibited intermediate properties with respect to the corresponding proteins from avian or human influenza viruses, suggesting that some molecular characteristics of PB1 and PB2 proteins might at least partially account for the ability of the A/Hong Kong/156/97 virus to replicate in humans.  (+info)

Evolutionary characterization of the six internal genes of H5N1 human influenza A virus. (70/2156)

The entire nucleotide sequences of all six internal genes of six human H5N1 influenza A viruses isolated in Hong Kong in 1997 were analysed in detail from a phylogenetic point of view and compared with the evolutionary patterns of the haemagglutinin and neuraminidase genes. Despite being isolated within a single year in the same geographical location, human H5N1 viruses were characterized by a variety of amino acid substitutions in the ribonucleoprotein complex [PB2, PB1, PA and nucleoprotein (NP)] as well as the matrix (M) proteins 1 and 2 and nonstructural (NS) proteins 1 and 2. The presence of previously reported amino acid sequences specific for human strains was confirmed in the PB2, PA, NP and M2 proteins. Nucleotide and amino acid sequence identities of the six internal genes of H5N1 viruses examined here were separated into at least two variant groups. In agreement with the above result, phylogenetic trees of the six internal genes of human H5N1 viruses were generally composed of two minor clades. Additionally, variable dendrogram topologies suggested that reassortment among viruses contributed further to the genetic variability of these viruses. As a result, it became clear that human H5N1 viruses are characterized by divergent gene constellations, suggesting the possible occurrence of genetic reassortment between viruses of the two evolutionary lineages.  (+info)

Selective binding of hepatitis C virus core protein to synthetic oligonucleotides corresponding to the 5' untranslated region of the viral genome. (71/2156)

Although it is assumed that hepatitis C virus (HCV) core protein binds with viral RNA to form a nucleocapsid, little is known about the resulting molecular interactions. We utilized surface plasmon resonance technology to study the structural basis of the affinity and the preference of the interaction between HCV core protein and oligonucleotides derived from the viral genome. Among the 10 oligonucleotides corresponding to the 5' untranslated region (5'UTR) of the tested HCV genome, the real-time analysis of sensorgrams indicated that the core protein binds most efficiently and stably to the 31-nucleotide-long sequence of the loop IIId domain, whose secondary structure is highly conserved not only among different HCV genotypes but also among pestiviruses. There also could be some interactions of the core protein with the loop I domain and the region of nt 23-41. The kinetic profiles, together with those obtained in experiments using single- and double-stranded polymeric oligonucleotides, suggest a multimerization of the core protein in solution. These newly characterized properties could provide a basis for understanding the pathway of the viral nucleocapsid assembly.  (+info)

Core protein phosphorylation modulates pregenomic RNA encapsidation to different extents in human and duck hepatitis B viruses. (72/2156)

To clarify the role of core protein phosphorylation in pregenomic-RNA encapsidation of human and duck hepatitis B viruses (HBV and DHBV, respectively), we have examined the phosphorylation states of different forms of intracellular HBV core protein and the phenotypic effects of mutations in the phosphorylation sites of HBV and DHBV core proteins. We show that HBV core protein is phosphorylated to similar extents in the form of protein dimers and after further assembly in pregenomic RNA-containing capsids. Individual and multiple substitutions of alanine and aspartic acid for serine in the phosphorylation sites of HBV core protein resulted in site-specific and synergistic effects on RNA encapsidation, ranging from 2-fold enhancement to more than 10-fold inhibition. Core protein variants with mutations in all phosphorylation sites exhibited dominant-negative effects on RNA encapsidation by wild-type protein. The results suggest that the presence of phosphoserine at position 162 of HBV core protein is required for pregenomic-RNA encapsidation, whereas phosphoserine at position 170 optimizes the process and serine might be preferable in position 155. Examination of the pregenomic-RNA-encapsidating capacities of DHBV core protein variants, in which four phosphorylation sites were jointly mutated to alanine or aspartic acid, suggests that phosphorylation of DHBV core protein at these sites may optimize pregenomic-RNA encapsidation but that its impact is much less profound than in the case of HBV. The possible mechanisms by which RNA encapsidation may be modulated by core protein phosphorylation are discussed in the context of the observed differences between the two viruses.  (+info)