The vaccinia virus 39-kDa protein forms a stable complex with the p4a/4a major core protein early in morphogenesis. (49/2156)

The vaccinia virus (VV) 39-kDa protein, the product of the A4L gene, is a highly antigenic protein of the viral core. Pulse-chase and immunoprecipitation experiments have shown that the 39-kDa protein interacts with p4a (encoded by the A10L gene), the precursor of the most abundant virion protein. This interaction is maintained with the processed 4a form that arises during virion maturation. The controlled disruption of mature viral particles showed that the 39-kDa and 4a proteins are tightly bound within the virion. Immunoelectron microscopy showed that both proteins first localize within the cytoplasm and later accumulate inside the viral factories, reaching these locations via a mechanism apparently unrelated to cellular membranes. Double labeling experiments showed a colocalization of both proteins in all virus-induced structures.  (+info)

Vaccination with DNA encoding internal proteins of influenza virus does not require CD8(+) cytotoxic T lymphocytes: either CD4(+) or CD8(+) T cells can promote survival and recovery after challenge. (50/2156)

DNA vaccination offers the advantages of viral gene expression within host cells without the risks of infectious virus. Like viral vaccines, DNA vaccines encoding internal influenza virus proteins can induce immunity to conserved epitopes and so may defend the host against a broad range of viral variants. CD8(+) cytotoxic T lymphocytes (CTL) have been described as essential effectors in protection by influenza nucleoprotein (NP), although a lesser role of CD4(+) cells has been reported. We immunized mice with plasmids encoding influenza virus NP and matrix (M). NP + M DNA allowed B6 mice to survive otherwise lethal challenge infection, but did not protect B6-beta(2)m(-/-) mice defective in CD8(+) CTL. However, this does not prove CTL are required, because beta(2)m(-/-) mice have multiple immune abnormalities. We used acute T cell depletion in vivo to identify effectors critical for defense against challenge infection. Since lung lymphocytes are relevant to virus clearance, surface phenotypes and cytolytic activity of lung lymphocytes were analyzed in depleted animals, along with lethal challenge studies. Depletion of either CD4(+) or CD8(+) T cells in NP + M DNA-immunized BALB/c mice during the challenge period did not significantly decrease survival, while simultaneous depletion of CD4(+) and CD8(+) cells or depletion of all CD90(+) cells completely abrogated survival. We conclude that T cell immunity induced by NP + M DNA vaccination is responsible for immune defense, but CD8(+) T cells are not essential in the active response to this vaccination. Either CD4(+) or CD8(+) T cells can promote survival and recovery in the absence of the other subset.  (+info)

Synthesis in Escherichia coli of avian reovirus core protein varsigmaA and its dsRNA-binding activity. (51/2156)

The genome segment S2 of p6ian reovirus (ARV) S1133 was cloned and sequenced. The entire S2 nucleotide sequence is 1325 bp long with one long open reading frame that encodes a protein of 415 amino acids, corresponding to varsigmaA, a major core protein of ARV. S2 possesses a pentanucleotide, TCATC, at the 3'-terminus of its plus strand, common to other known genome segments of ARV and to 10 genome segments of mammalian reovirus. Amino acid sequence analysis revealed that varsigmaA contains a carboxy-terminal region (one-fourth of the protein) that is formed from alpha-helices and beta-turns, and the remainder (three-fourths of the protein) is formed predominantly from beta-strands and beta-turns. Analysis of binding activity to poly(rI)-poly(rC)-agarose suggested that ARV protein A present in total virus-infected chicken embryo fibroblasts (CEF) had dsRNA-binding activity. To further characterize the binding activity, protein varsigmaA was subsequently expressed in Escherichia coli BL21(DE3) cells as a fusion protein and isolated by metal chelate affinity chromatography. The expressed protein evarsigmaA was further purified through a Superdex 75 HR 10/30 column after digestion of the purified fusion peptide with enterokinase. The expressed protein evarsigmaA has the same molecular weight as virion protein varsigmaA purified from ARV-infected CEF and is indistinguishable from virion protein varsigmaA by immunoblot analysis. The evarsigmaA binds cooperatively alpha (32)P-labeled dsRNA probe produced by run-off transcription of clone pGEM-3Zf(+)S4. The binding reaction is blocked by homologous ARV dsRNA or heterologous infectious bursal disease virus dsRNA and poly(rI)-poly(rC), but not by salmon sperm DNA. The results indicate that the expressed protein evarsigmaA has dsRNA-binding activity similar to that of varsigmaA obtained from infected cells, and its binding is sequence-independent.  (+info)

Possible involvement of the double-stranded RNA-binding core protein sigmaA in the resistance of avian reovirus to interferon. (52/2156)

Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.  (+info)

Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. (53/2156)

Mature human immunodeficiency virus type 1 (HIV-1) particles contain a cone-shaped core structure consisting of the internal ribonucleoprotein complex encased in a proteinaceous shell derived from the viral capsid protein. Because of their very low stability after membrane removal, HIV-1 cores have not been purified in quantities sufficient for structural and biochemical analysis. Based on our in vitro assembly experiments, we have developed a novel method for isolation of intact mature HIV-1 cores. Concentrated virus suspensions were briefly treated with nonionic detergent and immediately centrifuged in a microcentrifuge for short periods of time. The resuspended pellet was subsequently analyzed by negative-stain and thin-section electron microscopy and by immunoelectron microscopy. Abundant cone-shaped cores as well as tubular and aberrant structures were observed. Stereo images showed that core structures preserved their three-dimensional architecture and exhibited a regular substructure. Detailed analysis of 155 cores revealed an average length of ca. 103 nm, an average diameter at the base of ca. 52 nm, and an average angle of 21.3 degrees. There was significant variability in all parameters, indicating that HIV cores are not homogeneous. Immunoblot analysis of core preparations allowed semiquantitative estimation of the relative amounts of viral and cellular proteins inside the HIV-1 core, yielding a model for the topology of various proteins inside the virion.  (+info)

Interactions between HIV-1 gp41 core and detergents and their implications for membrane fusion. (54/2156)

The gp41 envelope protein mediates entry of human immunodeficiency virus type 1 (HIV-1) into the cell by promoting membrane fusion. The crystal structure of a gp41 ectodomain core in its fusion-active state is a six-helix bundle in which a N-terminal trimeric coiled coil is surrounded by three C-terminal outer helices in an antiparallel orientation. Here we demonstrate that the N34(L6)C28 model of the gp41 core is stabilized by interaction with the ionic detergent sodium dodecyl sulfate (SDS) or the nonionic detergent n-octyl-beta-D-glucopyranoside (betaOG). The high resolution x-ray structures of N34(L6)C28 crystallized from two different detergent micellar media reveal a six-helix bundle conformation very similar to that of the molecule in water. Moreover, N34(L6)C28 adopts a highly alpha-helical conformation in lipid vesicles. Taken together, these results suggest that the six-helix bundle of the gp41 core displays substantial affinity for lipid bilayers rather than unfolding in the membrane environment. This characteristic may be important for formation of the fusion-active gp41 core structure and close apposition of the viral and cellular membranes for fusion.  (+info)

Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. (55/2156)

A systematic analysis was carried out to identify the amino acid signals that regulate the nucleo-cytoplasmic transport of the influenza A virus nucleoprotein (NP). The analysis involved determining the intracellular localization of eight deleted recombinant NP proteins and 14 chimeric proteins containing the green fluorescent protein fused to different NP fragments. In addition, the subcellular distribution of NP derivatives that contained specific substitutions at serine-3, which is the major phosphorylation site of the A/Victoria/3/75 NP, were analysed. From the results obtained, it is concluded that the NP contains three signals involved in nuclear accumulation and two regions that cause cytoplasmic accumulation of the fusion proteins. One of the karyophilic signals was located at the N terminus of the protein, and the data obtained suggest that the functionality of this signal can be modified by phosphorylation at serine-3. These findings are discussed in the context of the transport of influenza virus ribonucleoprotein complexes into and out of the nucleus.  (+info)

Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. (56/2156)

Persistent hepatitis C virus (HCV) infection is a major cause of chronic liver dysfunction in humans and is epidemiologically closely associated with the development of human hepatocellular carcinoma. Among HCV components, core protein has been reported to be implicated in cell growth regulation both in vitro and in vivo, although mechanisms explaining those effects are still unclear. In the present study, we identified that members of the 14-3-3 protein family associate with HCV core protein. 14-3-3 protein bound to HCV core protein in a phosphoserine-dependent manner. Introduction of HCV core protein caused a substantial increase in Raf-1 kinase activity in HepG2 cells and in a yeast genetic assay. Furthermore, the HCV core-14-3-3 interaction was essential for Raf-1 kinase activation by HCV core protein. These results suggest that HCV core protein may represent a novel type of Raf-1 kinase-activating protein through its interaction with 14-3-3 protein and may contribute to hepatocyte growth regulation.  (+info)