Serious envenomation after a snakebite by a Western bush viper (Atheris chlorechis) in the Netherlands: a case report. (49/160)

Venomous snakebites are a rarity in the Netherlands. In this report we describe the case of a 26-year-old male amateur snakekeeper who was bitten in his left index finger by a Western bush viper (Atheris chlorechis). His clinical condition deteriorated rapidly with acute renal failure and considerable blood loss due to coagulopathy. Antidote was not readily available and was finally supplied by a zoo in Antwerp, Belgium. One day after admission the blood loss diminished.  (+info)

Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. (50/160)

BACKGROUND: Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom. METHODS AND FINDINGS: We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs) that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string). We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains) or antiserum raised by conventional (whole venom) immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms. CONCLUSIONS: These data provide valuable sequence and structure/function information of viper venom hemorrhagins but, more importantly, a new opportunity to design toxin-specific antivenoms-the first major conceptual change in antivenom design after more than a century of production. Furthermore, this approach may be adapted to immunotherapy design in other cases where targets are numerous, diverse, and poorly characterized such as those generated by hypermutation or antigenic variation.  (+info)

Transcriptome analysis of Deinagkistrodon acutus venomous gland focusing on cellular structure and functional aspects using expressed sequence tags. (51/160)

BACKGROUND: The snake venom gland is a specialized organ, which synthesizes and secretes the complex and abundant toxin proteins. Though gene expression in the snake venom gland has been extensively studied, the focus has been on the components of the venom. As far as the molecular mechanism of toxin secretion and metabolism is concerned, we still knew a little. Therefore, a fundamental question being arisen is what genes are expressed in the snake venom glands besides many toxin components? RESULTS: To examine extensively the transcripts expressed in the venom gland of Deinagkistrodon acutus and unveil the potential of its products on cellular structure and functional aspects, we generated 8696 expressed sequence tags (ESTs) from a non-normalized cDNA library. All ESTs were clustered into 3416 clusters, of which 40.16% of total ESTs belong to recognized toxin-coding sequences; 39.85% are similar to cellular transcripts; and 20.00% have no significant similarity to any known sequences. By analyzing cellular functional transcripts, we found high expression of some venom related genes and gland-specific genes, such as calglandulin EF-hand protein gene and protein disulfide isomerase gene. The transcripts of creatine kinase and NADH dehydrogenase were also identified at high level. Moreover, abundant cellular structural proteins similar to mammalian muscle tissues were also identified. The phylogenetic analysis of two snake venom toxin families of group III metalloproteinase and serine protease in suborder Colubroidea showed an early single recruitment event in the viperids evolutionary process. CONCLUSION: Gene cataloguing and profiling of the venom gland of Deinagkistrodon acutus is an essential requisite to provide molecular reagents for functional genomic studies needed for elucidating mechanisms of action of toxins and surveying physiological events taking place in the very specialized secretory tissue. So this study provides a first global view of the genetic programs for the venom gland of Deinagkistrodon acutus described so far and an insight into molecular mechanism of toxin secreting.  (+info)

Some aspects of the venom proteome of the Colubridae snake Philodryas olfersii revealed from a Duvernoy's (venom) gland transcriptome. (52/160)

We investigated the putative toxins of Philodryas olfersii (Colubridae), a representative of a family of snakes neglected in venom studies despite their growing medical importance. Transcriptomic data of the venom gland complemented by proteomic analysis of the gland secretion revealed the presence of major toxin classes from the Viperidae family, including serine proteases, metalloproteases, C-type lectins, Crisps, and a C-type natriuretic peptide (CNP). Interestingly, the phylogenetic analysis of the CNP precursor showed it as a linker between two related precursors found in Viperidae and Elapidae snakes. We suggest that these precursors constitute a monophyletic group derived from the vertebrate CNPs.  (+info)

Clinical, physiological and serological observations of a human following a venomous bite by Macrovipera lebetina lebetina (Reptilia: Serpentes). (53/160)

A researcher, a 40 year-old male, was bitten on his finger accidentally by a 75 cm long, adult male blunt-nosed viper, Macrovipera lebetina lebetina (Linnaeus) that had been collected from northern Cyprus during laboratory work in the Zoology Section, Biology Department of the Ege University Faculty of Science. The clinical signs, physiological and biochemical changes soon after the venomous bite by the blunt-nosed viper as well as the electrophoretic separation of plasma proteins of the patient have been presented here. Serious important symptoms (edema, hypotension shock, hemorrhage, tissue necrosis, and melanoderma) developed and major quantitative differences in the fractions of albumin, globulin and albumin/globulin ratios were detected. On the other hand, the measurements carried out in blood smears and biochemical results indicated the decrease in RBC, MCV, MHV and a decrease in the diameter of red blood cells, as well as an increase in WBC.  (+info)

Age-dependent variations in the venom proteins of Vipera xanthina (Gray, 1849) (Ophidia: Viperidae). (54/160)

In this study, polyacrylamide disc gel electrophoresis and densitometry analysis methods were used to analyze venom extracts of Vipera xanthina specimens of different lengths (35, 47 and 88 cm) collected from the same locality. The electropherograms of the venom protein samples showed age-dependent qualitative and quantitative variations.  (+info)

Proteomic profiling of a snake venom using high mass detection MALDI-TOF mass spectrometry. (55/160)

Proteomic profiling involves identification and quantification of protein components in complex biological systems. Most of the mass profiling studies performed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have been restricted to peptides and small proteins (<20 kDa) because the sensitivity of the standard ion detectors decreases with increasing ion mass. Here we perform a protein profiling study of the snake venom Sistrurus miliarius barbouri, comparing 2D gel electrophoresis and reversed-phase high-performance liquid chromatography (HPLC) with a high mass cryodetector MALDI-TOF instrument (Macromizer), whose detector displays an uniform sensitivity with mass. Our results show that such MS approach can render superior analysis of protein complexity compared with that obtained with the electrophoretic and chromatographic approaches. The summation of ion impacts allows relative quantification of different proteins, and the number of ion counts correlates with the peak areas in the reversed-phase HPLC. Furthermore, the sensitivity reached with the high mass cryodetection MS technology clearly exceeds the detection limit of standard high-sensitivity staining methods.  (+info)

Inhibitory effect of snake venom toxin from Vipera lebetina turanica on hormone-refractory human prostate cancer cell growth: induction of apoptosis through inactivation of nuclear factor kappaB. (56/160)

We investigated whether the snake venom toxin (SVT) from Vipera lebetina turanica inhibits cell growth of human prostate cancer cells by inducing apoptosis and also studied possible signaling pathways involved in this cell death. SVT inhibited growth of PC-3 and DU145 cells, androgen-independent prostate cancer cells, but not LNCaP cells, a human androgen-dependent prostate cancer cell. Cells were arrested in the G(2)-M phase by SVT with a concomitant decrease in the expression of the G(2)-M phase regulatory protein cyclin B1 and were also arrested in the G(1)-S phase with decreasing expression of cyclin-dependent kinase 4, cyclin D1 and cyclin E. In addition to the growth-inhibitory effect, SVT increased the induction of apoptotic cell death. Untreated PC-3 cells show high DNA binding activity of nuclear factor kappaB (NF-kappaB), an antiapoptotic transcriptional factor, but this was inhibited by SVT and accompanied by a significant inhibition of p50 translocation into the nucleus, as well as phosphorylation of inhibitory kappaB. Consistent with the induction of apoptosis and inhibition of NF-kappaB, this toxin increased the expression of proapoptotic proteins such as p53, Bax, caspase-3, and caspase-9, but down-regulated antiapoptotic protein Bcl-2. However, SVT did not show an inhibitory effect on cell growth and caspase-3 activity in cells carrying mutant p50 and inhibitory kappaB kinase plasmids. Confocal microscopy analysis showed that SVT is taken up into the nucleus of the cells. These findings suggest that a nanogram concentration range of SVT from V. lebetina turanica could inhibit hormone-refractory human prostate cancer cell growth, and the effect may be related to NF-kappaB signal-mediated induction of apoptosis.  (+info)